F112-P

FLOWRATE INDICATOR / TOTALIZER

WITH LINEARISATION

Signal input flowmeter: pulse, Namur and coil.
Signal outputs: (0)4-20mA / 0-10V ref. flowrate and pulse ref. total.
Options: Intrinsically Safe, Modbus communication, external reset and backlight.

C \subset 国

SAFETY INSTRUCTIONS

- Any responsibility is lapsed if the instructions and procedures as described in this manual are not followed.
- LIFE SUPPORT APPLICATIONS: The F112-P is not designed for use in life support appliances, devices, or systems where malfunction of the product can reasonably be expected to result in a personal injury. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify the manufacturer and supplier for any damages resulting from such improper use or sale.
- Electro static discharge does inflict irreparable damage to electronics! Before installing or opening the unit, the installer has to discharge himself by touching a well-grounded object.

- This unit must be installed in accordance with the EMC guidelines (Electro Magnetic Compatibility).
- Do connect a proper grounding to the aluminum casing as indicated if the F112-P has been supplied with the $115-230 \mathrm{~V}$ AC power-supply type PM. The green / yellow wire between the back-casing and removable terminal-block may never be removed.
- Intrinsically Safe applications: follow the instructions as mentioned in Chapter 5 and consult "Fluidwell F1.....-XI - Documentation for Intrinsic Safety".

DISPOSAL

At the end of its life this product should be disposed of according to local regulations regarding waste electronic equipment. If a battery is present in this product it should be disposed of separately. The separate collection and recycling of your waste equipment will help to conserve natural resources and ensure that it is recycled in a manner that protects the environment.

SAFETY RULES AND PRECAUTIONARY MEASURES

- The manufacturer accepts no responsibility whatsoever if the following safety rules and precautions instructions and the procedures as described in this manual are not followed.
- Modifications of the F112-P implemented without preceding written consent from the manufacturer, will result in the immediate termination of product liability and warranty period.
- Installation, use, maintenance and servicing of this equipment must be carried out by authorized technicians.
- Check the mains voltage and information on the manufacturer's plate before installing the unit.
- Check all connections, settings and technical specifications of the various peripheral devices with the F112-P supplied.
- Open the casing only if all leads are free of potential.
- Never touch the electronic components (ESD sensitivity).
- Never expose the system to heavier conditions than allowed according to the casing classification (see manufacture's plate and chapter 4.2.).
- If the operator detects errors or dangers, or disagrees with the safety precautions taken, then inform the owner or principal responsible.
- The local labor and safety laws and regulations must be adhered to.

ABOUT THE OPERATION MANUAL

This operation manual is divided into two main sections:

- The daily use of the unit is described in chapter 2 "Operation". These instructions are meant for users.
- The following chapters and appendices are exclusively meant for electricians/technicians. These provide a detailed description of all software settings and hardware installation guidance.

This operation manual describes the standard unit as well as most of the options available. For additional information, please contact your supplier.

A hazardous situation may occur if the F112-P is not used for the purpose it was designed for or is used incorrectly. Please carefully note the information in this operating manual indicated by the pictograms:

A "warning" indicates actions or procedures which, if not performed correctly, may lead to personal injury, a safety hazard or damage of the F112-P or connected instruments.

A "caution" indicates actions or procedures which, if not performed correctly, may lead to

A "note" indicates actions or procedures which, if not performed correctly, may indirectly
Note! affect operation or may lead to an instrument response which is not planned.

Hardware version:	02.01.xx
Software version:	02.05.xx
Manual :	HF112PEN_v0501_04
© Copyright 1997-2011	Fluidwell bv- The Netherlands.

Information in this manual is subject to change without prior notice. The manufacturer is not responsible for mistakes in this material or for incidental damage caused as a direct or indirect result of the delivery, performance or use of this material.
© All rights reserved. No parts of this publication may be reproduced or used in any form or by any means without written permission of your supplier.

CONTENTS MANUAL

Safety instructions 2
Disposal 2
Safety rules and precautionary measures 2
About the operation manual 3

1. Introduction 5
1.1. System description of the F112-P 5
2. Operational 7
2.1. General 7
2.2. Control panel. 7
2.3. Operator information and functions 8
3. Configuration 9
3.1. Introduction 9
3.2. Programming SETUP-level 9
3.2.1. General 9
3.2.2. Overview functions SETUP level 12
3.2.3. Explanation OF SETUP-functions 13
1 - Total 13
2 - Flowrate 14
3 - Display 15
4 - Power management 15
5 - Flowmeter 16
6 - linearisation 17
7 - Analog output. 18
8 - Relay output. 19
9 - Communication (optional). 20
A - Others. 20
4. Installation 21
4.1. General directions 21
4.2. Installation / surrounding conditions 21
4.3. Dimensions- Enclosure 22
4.4. Installing the hardware 24
4.4.1 Introduction 24
4.4.2. Voltage selection sensor supply 25
4.4.3. Terminal connectors 26
5. Intrinsically safe applications. 34
5.1. General information and instructions 34
5.2. Terminal connectors Intrinsically Safe applications 35
5.3 Configuration Examples 37
5.4 Battery replacement instructions. 39
6. Maintenance 40
6.1 General directions 40
6.2. Repair 40
Appendix A: Technical specification 41
Appendix B: Problem solving. 44
Appendix C: Communication variables 45
Notes 48
Index of this manual. 50
List of figures in this manual 50

1. INTRODUCTION

1.1. SYSTEM DESCRIPTION OF THE F112-P

Functions and features

The flowrate / totalizer model F112-P is a microprocessor driven instrument designed to linearise the flowmeters flow curve and to display flowrate, total and accumulated total.
This product has been designed with a focus on:

- ultra-low power consumption to allow long-life battery powered applications (type PB / PC),
- intrinsic safety for use in hazardous applications (type XI),
- several mounting possibilities with aluminum or GRP enclosures for harsh industrial surroundings,
- ability to process all types of flowmeter signals,
- transmitting possibilities with analog / pulse and communication (option) outputs.

Flowmeter input

This manual describes the unit with a pulse type input from the flowmeter "-P version". Other versions are available to process (0)4-20mA or 0-10V flowmeter signals.
One flowmeter with a passive or active pulse, Namur or sine wave (coil) signal output can be connected to the F112-P. To power the sensor, several options are available.

Standard outputs

- Configurable pulse output: a scaled pulse mirroring a certain linearized total quantity. Maximum frequency 60 Hz .; the pulse length can be set from $7,8 \mathrm{msec}$ up to 2 seconds.
- Configurable linear (0)4-20mA or $0-10 \mathrm{~V}$ analog output with 10 -bits resolution mirroring the actual linearised flowrate. Flowrate levels as well as the minimum and maximum signal output can be tuned.

Overview typical application F112-P

Fig. 1: Typical application for the F112-P.

Page 6

Configuration of the unit

The F112-P was designed to be implemented in many types of applications. For that reason, a SETUP-level is available to configure your F112-P according to your specific requirements.
SETUP includes several important features, such as K-factors, measurement units, signal selection etc. All setting are stored in EEPROM memory and will not be lost in the event of power failure or a drained battery.
To extend the battery-life time (option), please make use of the power-management functions as described in chapter 3.2.3.

Display information

The unit has a large transflective LCD with all kinds of symbols and digits to display measuring units, status information, trend-indication and key-word messages.
Flowrate and totals can be displayed either with the small 8 mm digits or with the 17 mm digits. A backup of the total and accumulated total in EEPROM memory is made every minute.

Options

The following options are available: isolated or active 4-20mA / 0-10V / 0-20mA analog output, full Modbus communication RS232/485/TTL (also battery powered), intrinsic safety, mechanical relay or active output, power- and sensor-supply options, panel-mount, wall-mount and weather-proof enclosures, flame proof enclosure and LED backlight.

2. OPERATIONAL

2.1. GENERAL

- The F112-P may only be operated by personnel who are authorized and trained by the operator of the facility. All instructions in this manual are to be observed.
- Take careful notice of the " Safety rules, instructions and precautionary measures " in the front of this manual.

This chapter describes the daily use of the F112-P. This instruction is meant for users / operators.

2.2. CONTROL PANEL

The following keys are available:

Fig. 2: Control Panel.

Functions of the keys

PROG This key is used to program and save new values or settings.
ENTER It is also used to gain access to SETUP-level; please read chapter 3.

This key is used to SELECT accumulated total.
The arrow-key $\boldsymbol{\text { s }}$ is used to increase a value after PROG has been pressed or to configure the unit; please read chapter 3.

Press this key twice to CLEAR the value for total.
The arrow-key is used to select a digit after PROG has been pressed or to configure the unit; please read chapter 3 .

2.3. OPERATOR INFORMATION AND FUNCTIONS

In general, the F112-P will always act at Operator level. The information displayed is dependant upon the SETUP-settings. All pulses generated by the connected flowmeter are measured by the F112-P in the background, whichever screen refresh rate setting is chosen. After pressing a key, the display will be updated very quickly during a 30 second period, after which it will slow-down again. All information displayed is corrected by using the linearization table as stored in the F112-P.

Fig. 3: Example of display information during process.

For the Operator, the following functions are available:

- Display flowrate / total or flowrate

This is the main display information of the F112-P. After selecting any other information, it will always return to this main display automatically.
Total is displayed on the upper-line of the display and flowrate on the bottom line.
It is possible to display flowrate only with the large 17 mm digits; in this instance press the SELECT-key to read the total.
When "-------" is shown, then the flowrate value is too high to be displayed. The arrows $\stackrel{\rightharpoonup}{*}$ indicate the increase/decrease of the flowrate trend.

- Clear total

The value for total can be re-initialized. To do so, press CLEAR twice. After pressing CLEAR once, the flashing text "PUSH CLEAR" is displayed. To avoid re-initialization at this stage, press another key than CLEAR or wait for 20 seconds.
Re-initialization of total DOES NOT influence the accumulated total.

- Display accumulated total

When the SELECT-key is pressed, total and accumulated total are displayed. The accumulated total cannot be re-initialized. The value will count up to $99,999,999,999$. The unit and number of decimals are displayed according to the configuration settings for total.

- Low-battery alarm

When the battery voltage drops, it must be replaced. At first "low-battery" will flash, but as soon as it is displayed continuously, the battery MUST be replaced shortly after! Only original batteries supplied by the manufacturer may be used, else the guarantee and liability will be terminated. The remaining lifetime after the first moment of indication is generally several days up to some weeks.

Fig. 4: Example of low-battery alarm.

- Alarm 01-03

When "alarm" is displayed, please consult Appendix B: problem solving.

3. CONFIGURATION

3.1. INTRODUCTION

This and the following chapters are exclusively meant for electricians and non-operators. In these, an extensive description of all software settings and hardware connections are provided.

- Mounting, electrical installation, start-up and maintenance of the instrument may only be carried out by trained personnel authorized by the operator of the facility. Personnel must read and understand this Operating Manual before carrying out its instructions.
- The F112-P may only be operated by personnel who are authorized and trained by the operator of the facility. All instructions in this manual are to be observed.
- Ensure that the measuring system is correctly wired up according to the wiring diagrams. The housing may only be opened by trained personnel.
- Take careful notice of the " Safety rules, instructions and precautionary measures " in the front of this manual.

3.2. PROGRAMMING SETUP-LEVEL

3.2.1. GENERAL

Configuration of the F112-P is done at SETUP-level. SETUP-level is reached by pressing the PROG/ENTER key for 7 seconds; at which time, both arrows $\stackrel{\rightharpoonup}{*}$ will be displayed. In order to return to the operator level, PROG will have to be pressed for three seconds. Alternatively, if no keys are pressed for 2 minutes, the unit will exit SETUP automatically.
SETUP can be reached at all times while the F112-P remains fully operational.
Note: A pass code may be required to enter SETUP. Without this pass code access to SETUP is denied.

To enter SETUP-level:

Matrix structure SETUP-level:

SCROLLING THROUGH SETUP-LEVEL

Selection of function-group and function:
SETUP is divided into several function groups and functions.

Each function has a unique number, which is displayed below the word "SETUP" at the bottom of the display. The number is a combination of two figures. The first figure indicates the function-group and the second figure the sub-function. Additionally, each function is expressed with a keyword.

After selecting a sub-function, the next main function is selected by scrolling through all "active" subfunctions (e.g. $1^{\star}, 11^{\star}, 12^{\star}, 13^{\star}, 14^{\star}, 1^{\star}, 2^{\star}, 3^{\star}, 31_{\text {etc. }}$).

To change or select a value:

To change a value, use to select the digits and $\boldsymbol{\bullet}$ to increase that value.
To select a setting, both \bullet and ${ }^{\bullet}$ can be used.
If the new value is invalid, the increase sign \bullet or decrease-sign \downarrow will be displayed while you are programming.

When data is altered but ENTER is not pressed, then the alteration can still be cancelled by waiting for 20 seconds or by pressing ENTER for three seconds: the PROG-procedure will be left automatically and the former value reinstated.

Note: alterations will only be set after ENTER has been pressed!

To return to OPERATOR-level:

In order to return to the operator level, PROG will have to be pressed for three seconds. Also, when no keys are pressed for 2 minutes, SETUP will be left automatically.
3.2.2. OVERVIEW FUNCTIONS SETUP LEVEL

SETUP FUNCTIONS AND VARIABLES

1 TOTAL

	11	UNIT	L-m3-kg - lb - GAL - USGAL - bbl - no unit
	12	DECIMALS	0-1-2-3 (Ref: displayed value)
	13	K-FACTOR:	0.000010 -9,999,999
	14	DECIMALS K-FACTOR	0-6
2	FLOWRATE		
	21	UNIT	$\begin{aligned} & \mathrm{mL}-\mathrm{L}-\mathrm{m} 3-\mathrm{mg}-\mathrm{g}-\mathrm{kg}-\text { ton }-\mathrm{GAL}-\mathrm{bbl}-\mathrm{lb}-\mathrm{cf}-\mathrm{REV}- \\ & \text { no unit }-\mathrm{scf}-\mathrm{Nm} 3-\mathrm{NL}-\mathrm{P} \end{aligned}$
	22	TIME UNIT	sec - min - hour - day
	23	DECIMALS	0-1-2-3 (Ref: displayed value)
	24	K-FACTOR	0.000010-9,999,999
	25	DECIMALS K-FACTOR	0-6
	26	CALCULATION	per 1-255 pulses
	27	CUT-OFF	0.1-999.9 seconds
3	DISPLAY		
	31	FUNCTION	total - flowrate
4	POWER MANAGEMENT		

	42	BATTERY MODE	operational - shelf
5	FLOWMETER		
	51	SIGNAL	npn - npn_Ip - reed - reed_lp - pnp - pnp_Ip - namur coil hi - coil lo - act 8.1 - act 12 - act 24
6	LINEARISATION		

	61	FREQ. / M-FACTOR 1	$0.1-9,999.9 \mathrm{~Hz} / 0.000001-9.999999$
	62	FREQ. / M-FACTOR 2	$0.1-9,999.9 \mathrm{~Hz} / 0.000001-9.999999$
	63	FREQ. / M-FACTOR 3	$0.1-9,999.9 \mathrm{~Hz} / 0.000001-9.999999$

	6F	FREQ. / M-FACTOR 15	$0.1-9,999.9 \mathrm{~Hz} / 0.000001-9.999999$
	6G	LINEARISATION	enable / disable
	6H	DECIMALS FREQUENCY	00000-1111.1-222.22-33.333
7	ANALOG		
	71	OUTPUT	disable - enable
	72	$4 \mathrm{~mA} / 0 \mathrm{~V}$	0000.000-9,999,999
	73	20mA / 10V	0000.000-9,999,999
	74	CUT-OFF	0.0-9.9\%
	75	CALIBRATE LOW	default - calibrate - calibrate set
	76	CALIBRATE HIGH	default - calibrate - calibrate set
	77	FILTER	00-99
8	IMPULSE		
	81	PERIOD TIME	0-250
	82	IMPULSE PER	X, $\mathrm{XXX}, \mathrm{XXX}$ quantity
9	COMMUNICATION		
	91	SPEED / BAUDRATE	1200-2400-4800-9600
	92	ADDRESS	1-255
	93	MODE	rtu - off
A	OTHERS		
	A1	TYPE / MODEL	F112-P
	A2	SOFTWARE VERSION	-
	A3	SERIAL NO.	-
	A4	PASS CODE	0000-9999
	A5	TAGNUMBER	0000000-9999999

3.2.3. EXPLANATION OF SETUP-FUNCTIONS

	1-TOTAL
$\begin{aligned} & \text { MEASUREMENT UNIT } \\ & 11 \end{aligned}$	SETUP - 11 determines the measurement unit for total, accumulated total and pulse output. The following units can be selected: L - m3 - kg - lb. - GAL - USGAL - bbl - _ (no unit). Alteration of the measurement unit will have consequences for operator and SETUP-level values. Please note that the K-factor has to be adapted as well; the calculation is not done automatically.
DECIMALS 12	The decimal point determines for total, accumulated total and pulse output the number of digits following the decimal point. The following can be selected: $0000000-111111.1-22222.22-3333.333$
$\begin{aligned} & \text { K-FACTOR } \\ & 13 \end{aligned}$	With the K-factor, the flowmeter pulse signals are converted to a quantity. The K-factor is based on the number of pulses generated by the flowmeter per selected measurement unit (SETUP 11), for example per cubic meter. The more accurate the K-factor, the more accurate the functioning of the system will be. Example 1: Calculating the K-factor. Let us assume that the flowmeter generates 2.4813 pulses per liter and the selected unit is "cubic meters / m3". A cubic meter consists of 1000 parts of one liter which implies 2,481.3 pulses per m3. So, the K-factor is 2,481.3. Enter for SETUP - 13: "2481300" and for SETUP - 14 - decimals K-factor " 3 ". Example 2: Calculating the K -factor. Let us assume that the flowmeter generates 6.5231 pulses per gallon and the selected measurement unit is gallons. So, the KFactor is 6.5231. Enter for SETUP - 13: "6523100" and for SETUP - 14 decimals K-factor " 6 ".
DECIMALS K-FACTOR 14	This setting determines the number of decimals for the K-factor entered. (SETUP 13). The following can be selected: 0-1-2-3-4-5-6 Please note that this setting influences the accuracy of the K-factor indirectly. (i.e. the position of the decimal point and thus the value given) This setting has NO influence on the displayed number of digits for total (SETUP 12)!

2 - FLOWRATE

The settings for total and flowrate are entirely separate. In this way, different units of measurement can be used for each e.g. cubic meters for total and liters for flowrate.
The display update time for flowrate is one second or more.
Note: these settings also influence the analog output.
MEASUREMENT UNIT SETUP - 21 determines the measurement unit for flowrate.
21 The following units can be selected:

```
mL - L-m3-mg-g-kg - ton - GAL - bbl - lb - cf - REV -
no unit - scf - Nm3-NL - P.
```

Alteration of the measurement unit will have consequences for operator and SETUP-level values.
Please note that the K-factor has to be adapted as well; the calculation is not done automatically.

	not done automatically.
TIME UNIT	The flowrate can be calculated per second (SEC), minute (MIN), hour (HR) or day (DAY).
$\mathbf{D E C I M A L S ~}$	This setting determines for flowrate the number of digits following the decimal point. The following can be selected:

$$
00000-1111.1-2222.22-3333.333
$$

K-FACTOR	W
$\mathbf{2 4}$	Th
	flo
lit	
th	

With the K-factor, the flowmeter pulse signals are converted to a flowrate. The K-factor is based on the number of pulses generated by the flowmeter per selected measurement unit (SETUP 21), for example per liter. The more accurate the K-factor, the more accurate the functioning of the system will be. For examples read SETUP 13.

25 (SETUP 24). The following can be selected:

$$
0-1-2-3-4-5-6
$$

Please note that this SETUP - influences the accuracy of the K-factor indirectly.
This setting has NO influence on the displayed number of digits for "flowrate" (SETUP 23)!
CALCULATION \quad The flowrate is calculated by measuring the time between a number of

26

CUT-OFF TIME

27
pulses, for example 10 pulses. The more pulses the more accurate the flowrate will be. The maximum value is 255 pulses.
Note: this setting does influence the update time for the analog output directly (maximum update 10 times a second). If the output response is too slow, decrease the number of pulses.
Note: the lower the number of pulses, the higher the power consumption of the unit will be (important for battery powered applications).
Note: for low frequency applications (below 10 Hz): do not program more than 10 pulses else the update time will be very slow.
Note: for high frequency application (above 1 kHz) do program a value of 50 or more pulses.
With this setting, you determine a minimum flow requirement thresh-hold, if during this time less than XXX-pulses (SETUP 26) are generated, the flowrate will be displayed as zero.
The cut-off time has to be entered in seconds - maximum time is 999 seconds (about 15 minutes).

3 - DISPLAY

FUNCTION	The large 17 mm digits can be set to display total or flowrate. W1
When "total" is selected, both total and flowrate are displayed simultaneously. When "flowrate" is selected, only flowrate will be displayed with it's measuring unit while total will be displayed after pressing SELECT.	

4 - POWER MANAGEMENT

When used with the internal battery option, the user can expect reliable measurement over a long period of time. The F112-P has several smart power management functions to extend the (optional) battery life time significantly. Two of these functions can be set:

LCD NEW	The calculation of the display-information influences the power consumption significantly. When the application does not require a fast display update, it is strongly advised to select a slow refresh rate. Please understand that NO information will be lost; every pulse will be counted and the output signals will be generated in the normal way. The following can be selected: Fast - 1 sec - 3 sec - 15 sec - 30 sec - off.
Example 3:Battery life-time battery life-time with a coil pick-up, 1KHz. pulses and FAST update: about 2 years. battery life-time with a coil pick-up, 1KHz. pulses and 1 sec update: about 5 years.	
Note: after a button has been pressed by the operator - the display refresh rate will always switch to FAST for 30 seconds. When "OFF" is selected, the display will be switched off after 30 seconds and will be switched on as soon as a button has been pressed.	
BATTERY-MODE	
The unit has two modes: operational or shelf. After "shelf" has been selected, the unit can be stored for several years; it will not count pulses, the display is switched off but all settings and totals are stored. In this mode, power consumption is extremely low. To wake up the unit again, press the SELECT-key twice.	

5 - FLOWMETER

$\begin{aligned} & \text { SIGNAL } \\ & 51 \end{aligned}$	The F112-P is able to handle several types of input signal. The type of flowmeter pickup / signal is selected with SETUP 51. Note: The selections "active pulse" offer a detection level of 50\% of the supply voltage. Read also par. 4.4.3. Flowmeter input terminal 09-11.			
TYPE OF SIGNAL	EXPLANATION	RESISTANCE	FREQ. 1 MV	REMARK
NPN	NPN input	$\begin{gathered} 100 \mathrm{~K} \\ \text { pull-up } \end{gathered}$	6 kHz .	(open collector)
NPN - LP	NPN input with low pass filter	$\begin{aligned} & 100 \mathrm{~K} \\ & \text { pull-up } \end{aligned}$	2.2 kHz .	(open collector) less sensitive
REED	Reed-switch input	$\begin{gathered} 1 \mathrm{M} \\ \text { pull-up } \end{gathered}$	1.2 kHz .	
REED - LP	Reed-switch input with low pass filter	$\begin{gathered} 1 \mathrm{M} \\ \text { pull-up } \end{gathered}$	120 Hz .	Less sensitive
PNP	PNP input	$\begin{gathered} 100 \mathrm{~K} \\ \text { pull-down } \end{gathered}$	6 kHz .	
PNP - LP	PNP input with low pass filter	$\begin{gathered} 100 \mathrm{~K} \\ \text { pull-down } \end{gathered}$	700 Hz .	Less sensitive
NAMUR	Namur input	820 Ohm pull-down	4 kHz .	External power required
COIL HI	High sensitive sine-wave (coil) input	-	20mVp-p.	Sensitive for disturbance!
COIL LO	Low sensitive sine-wave (coil) input	-	90mVp-p.	Normal sensitivity
ACT_8.1	Active pulse input 8.1 VDC	3K9	10KHz.	External power required
ACT_12	Active pulse input 12 VDC	4K	10KHz.	External power required
ACT_24	$\begin{aligned} & \text { Active pulse input } \\ & 24 \mathrm{VDC} \end{aligned}$	3K	10KHz.	External power required

6 - LINEARISATION

The linearization function is available to approach the real flow curve better as with the general K-factor (KFO) entered with setup 14 and 24 . This to obtain a more accurate flowrate, total and accumulated total as well as the analog and pulse output at any flowmeter frequency.
A maximum of 15 linearization-positions can be entered while the interpolation will calculate any other position in-between.

For each linearization position, the frequency and a Meter Factor (MF) must be entered. The Meter Factor for each frequency is calculated with following formula:

```
Meter-Factor = K
KF0
```

The lowest frequency and MF you enter will be valid from 0 Hz . The highest frequency and MF will be valid till 10 KHz . It is advised to enter the frequencies in increasing order, however it is not necessary. Please have a look at following example to understand the method of linearization:

K-Factor

$$
K F 0=51.64178
$$

$\mathrm{KF} 1=35.7$ @ 64 Hz.	$\mathrm{MF} 1=0.691300$
$\mathrm{KF} 2=47.5 @ 93 \mathrm{~Hz}$.	$\mathrm{MF} 2=0.919798$
$\mathrm{KF} 3=53.8$ @ 161 Hz.	$\mathrm{MF} 3=1.041792$
$\mathrm{KF} 4=49.2 @ 336 \mathrm{~Hz}$.	$\mathrm{MF} 4=0.952717$
$\mathrm{KF} 5=52.9$ @ 514 Hz.	$\mathrm{MF} 5=1.024364$

FREQUENCY I	The frequency is displayed at the bottom line of the display. M-FACTOR 61 TO 6F
	The maximum frequency is $9,999.9 \mathrm{~Hz}$. With value 0.0 Hz , the M-Factor is disabled. (Please read Setup function 6 H - decimals frequency) The M-Factor is displayed at the top-line of the display. The minimum value to be entered is 0.000001 and the maximum value is 9.999999. Please note that this value has always six decimals while the "dot" is not displayed. Most M-factors will be around 1.000000 like 0.945354 or 1.132573.
DISABLE / ENABLE GG	With this setup function, you can easily enable / disable the linearization function.
DECIMALS	For the frequency, following decimal positions can be selected: FREQUENCY 6H

7 - ANALOG OUTPUT				
A linear analog (0)4-20mA or $0-10 \mathrm{~V}$ signal is generated according to the flowrate with a 10 bits resolution. The settings for flowrate (SETUP - 2) influence the analog output directly. The relationship between rate and analog output is set with the following functions:				
DISABLE / ENABLE 71		The analog output can be disabled. In case of a passive analog output type AP, 3.5 mA will be generated if a power supply is available but the output is disabled.		
MINIMUM FLOWRATE 72		Enter here the flowrate at which the output should generate the minimum signal ($0 / 4 \mathrm{~mA}$ or 0 V) - in most applications at flowrate "zero". The number of decimals displayed depend upon SETUP 23. The time and measuring units (L/min for example) depend upon SETUP 21 and 22 but are not displayed.		
MAXIMUM FLOWRATE 73		Enter here the flowrate at which the output should generate the maximum signal (20 mA or 10 V) - in most applications at maximum flow. The number of decimals displayed depend upon SETUP 23. The time and measuring units (L/min for example) depend upon SETUP 21 and 22 but cannot be displayed.		
$\begin{aligned} & \text { CUT-OFF } \\ & 74 \end{aligned}$		To ignore leakage of the flow for example, a low flow cut-off can be set as a percentage of the full range of 16 mA , (or 20 mA or 10 V). When the flow is less than the required rate, the current will be the minimum signal ($0 / 4 \mathrm{~mA}$ or 10 V). Examples:		
$\begin{gathered} \text { 4MA } \\ \text { (SETUP } \\ 72) \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \mathrm{MA} \\ \text { (SETUP } \\ 73 \text {) } \\ \hline \end{gathered}$	CUT-OFF (SETUP 74)	REQUIRED RATE	OUTPUT
$0 \mathrm{~L} / \mathrm{min}$	$100 \mathrm{~L} / \mathrm{min}$	2\%	$(100-0) * 2 \%=2.0 \mathrm{~L} / \mathrm{min}$	$4+(16 * 2 \%)=4.32 \mathrm{~mA}$
$20 \mathrm{~L} / \mathrm{min}$	$800 \mathrm{~L} / \mathrm{min}$	3.5\%	$(800-20) * 3.5 \%=27.3 \mathrm{~L} / \mathrm{min}$	$4+(16 * 3.5 \%)=4.56 \mathrm{~mA}$
TUNE MIN / 4MA75		The initial minimum analog output value is $0 / 4 \mathrm{~mA}$ or 0 V . However, this value might differ slightly due to external influences such as temperature for example. The $0 / 4 \mathrm{~mA}$ or OV value can be tuned precisely with this setting. - Before tuning the signal, be sure that the analog signal is not being used for any application! After pressing PROG, the current will be about 4 mA (or $0 \mathrm{~mA} / 0 \mathrm{~V}$). The current can be increased / decreased with the arrow-keys and is directly active. Press ENTER to store the new value. Remark: the analog output value can be programmed "up-side-down" if desired, so 20 mA at minimum flowrate for example!		
$\begin{aligned} & \text { TUNE MA } \\ & 76 \end{aligned}$		The initial maximum analog output value is 20 mA (or 10 V). However, this value might differ slightly due to external influences such as temperature for example. The 20 mA value (or 10 V) can be tuned precisely with this setting. - Before tuning the signal, be sure that the analog signal is not being used for any application! After pressing PROG, the current will be about 20 mA . The current can be increased / decreased with the arrow-keys and is directly active. Press ENTER to store the new value. Remark: the analog output value can be programmed "up-side-down" if desired, so 4 mA at maximum flowrate for example!		

7 - ANALOG OUTPUT (CONTINUED)				
$\begin{aligned} & \text { FILTER } \\ & 77 \end{aligned}$	This function is used to stabilize the analog output signal. The output value is updated every 0.1 second. With the help of this digital filter a more stable but less precise reading can be obtained. The filter principal is based on three input values: the filter level (01-99), the last analog output value and the last average value. The higher the filter level, the longer the response time on a value change will be. Below, several filter levels with their response times are indicated:			
Filter value	RESPONSE TIME ON STEP CHANGE OF ANALOG VALUE. TIMe in SECONDS			
	50\% InFLUENCE	75\% INFLUENCE	90\% INFLUENCE	99\% INFLUENCE
01	filter disabled	filter disabled	filter disabled	filter disabled
02	0.1 second	0.2 second	0.4 second	0.7 second
03	0.2 second	0.4 second	0.6 second	1.2 seconds
05	0.4 second	0.7 second	1.1 seconds	2.1 seconds
10	0.7 second	1.4 seconds	2.2 seconds	4.4 seconds
20	1.4 seconds	2.8 seconds	4.5 seconds	9.0 seconds
30	2.1 seconds	4 seconds	7 seconds	14 seconds
50	3.5 seconds	7 seconds	11 seconds	23 seconds
75	5.2 seconds	10 seconds	17 seconds	34 seconds
99	6.9 seconds	14 seconds	23 seconds	45 seconds

8 - RELAY OUTPUT

One transistor or mechanic relay output is available as scaled pulse output according to the accumulated total.

PERIOD TIME PULSE OUTPUT

81

The period time determines the time that the transistor or relay will be switched; in other words the pulse length. The minimum time between the pulses is as long as the selected period time.
One period is approx. 7.8 msec . If the value selected is "zero", the pulse output is disabled. The maximum value is 255 periods.
Note: If the frequency should go out of range - when the flowrate increases for example - an internal buffer will be used to "store the missed pulses": As soon as the flowrate reduces again, the buffer will be "emptied".
It might be that pulses will be missed due to a buffer-overflow, so it is advised to program this setting within it's range.
If a mechanic relay is used for the pulse output, it is recommended to reduce the max. output frequency to 0.5 Hz , else the life time will be reduced significantly.

NUMBER OF PERIODS	Period time	MAX. FREQUENCY
0	disabled	disabled
1	0,0078 seconds	64 Hz.
2	0,0156 seconds	32 Hz.
3	0,0234 seconds	21 Hz.
64	0,5000 seconds	1 Hz.
255	1,9922 seconds	0.25 Hz.
According to the measurement unit settings for total, a pulse will be generated every X-quantity. Enter this quantity here while taking the displayed decimal position and measuring unit into account.		

9 - COMMUNICATION (OPTIONAL)

The functions described below deal with hardware that is not part of the standard delivery. Programming of these functions does not have any effect if this hardware has not been installed. Consult Appendix C and the Modbus communication protocol description for a detailed explanation.	
BAUDRATE $\mathbf{9 1}$	For external control, the following communication speeds can be selected: $1200-2400-4800-9600$ baud
BUS ADDRESS $\mathbf{9 2}$	For communication purposes, a unique identity can be attributed to every F112-P. This address can vary from 1-255.
MODE $\mathbf{9 3}$	The communication protocol is Modbus RTU mode. Select OFF, to disable this communication function.

TYPE OF MODEL A1	For support and maintenance it is important to have information about the characteristics of the F112-P. Your supplier will ask for this information in the case of a serious breakdown or to assess the suitability of your model for upgrade considerations.
VERSION SOFTWARE	
A2	For support and maintenance it is important to have information about the characteristics of the F112-P. Your supplier will ask for this information in the case of a serious breakdown or to assess the suitability of your model for upgrade considerations.
SERIAL NUMBER A3	For support and maintenance it is important to have information about the characteristics of the F112-P. Your supplier will ask for this information in the case of a serious breakdown or to assess the suitability of your model for upgrade considerations.
PASS CODE A4	All SETUP-values can be pass code protected. This protection is disabled with value 0000 (zero). Up to and including 4 digits can be programmed, for example 1234.
TAGNUMBER A5	For identification of the unit and communication purposes, a unique tag number of maximum 7 digits can be entered.

4. INSTALLATION

4.1. GENERAL DIRECTIONS

Mounting, electrical installation, start-up and maintenance of this instrument may only be carried out by trained personnel authorized by the operator of the facility. Personnel must read and understand this Operating Manual before carrying out its instructions.

- The F112-P may only be operated by personnel who are authorized and trained by the operator of the facility. All instructions in this manual are to be observed.
- Ensure that the measuring system is correctly wired up according to the wiring diagrams. Protection against accidental contact is no longer assured when the housing cover is removed or the panel cabinet has been opened (danger from electrical shock). The housing may only be opened by trained personnel.
- Take careful notice of the " Safety rules, instructions and precautionary measures " at the front of this manual.

4.2. INSTALLATION / SURROUNDING CONDITIONS

Take the relevant IP classification of the casing into account (see manufactures plate). Even an IP67 (NEMA 4X) casing should NEVER be exposed to strongly varying (weather) conditions.
When panel-mounted, the unit is IP65 (NEMA 4X)!
When used in very cold surroundings or varying climatic conditions, take the necessary precautions against moisture by placing a dry sachet of silica gel, for example, inside the instrument case.

Mount the F112-P on a solid structure to avoid vibrations.
4.3. DIMENSIONS- ENCLOSURE

Aluminum enclosures:

HA

HP

HM

HN

HU

HO

HV

HZ

Fig. 5: Dimensions aluminum enclosures.

GRP enclosures:

HK back box:
 (flat bottom)

HG

HJ
HE

Fig. 6: Dimensions GRP enclosures.

4.4. INSTALLING THE HARDWARE

4.4.1. INTRODUCTION

- Electro static discharge does inflict irreparable damage to electronics! Before installing or opening the unit, the installer has to discharge himself by touching a well-grounded object.
- This unit must be installed in accordance with the EMC guidelines (Electro Magnetic Compatibility).

Aluminum enclosures

- When installed in an aluminum enclosure and a potentially explosive atmosphere requiring apparatus of equipment protection level Ga and Da , the unit must be installed such that, even in the event of rare incidents, an ignition source due to impact or friction sparks between the enclosure and iron/steel is excluded.
- Do ground the aluminum enclosure properly as indicated, if the F112-P has been supplied with the $115-230 \mathrm{~V}$ AC power-supply type PM. The green / yellow wire between the back-casing and removable terminal-block may never be removed.

Fig. 7: Grounding aluminum enclosure with type PM 115-230V AC.

FOR INSTALLATION, PAY EMPHATIC ATTENTION TO:

- Separate cable glands with effective IP67 (NEMA4X) seals for all wires.
- Unused cable entries: ensure that you fit IP67 (NEMA4X) plugs to maintain rating.
- A reliable ground connection for both the sensor, and if applicable, for the metal casing.
- An effective screened cable for the input signal, and grounding of its screen to terminal 9 (GND) or at the sensor itself, whichever is appropriate to the application.

4.4.2. VOLTAGE SELECTION SENSOR SUPPLY

For Intrinsically Safe applications: read chapter 5.

Type PB / PC / PX (AP) - battery powered and output loop-powered applications:

Terminal 11 provides a limited supply voltage of 3.2 V DC (coil signals 1.2 V) for the signal output of the flowmeter.
Note: This voltage MAY NOT be used to power the flowmeters electronics, converters etc, as it will not provide adequate sustained power ! All energy used by the flowmeters pick-up will directly influence the battery life-time. It is strongly advised to use a "zero power" pickup such as a coil or reed-switch when operating without external power. It is possible to use some low power NPN or PNP output signals, but the battery life time will be significantly reduced (consult your distributor).

Type PD / PF / PM: Sensor supply: 1.2-3.2V-8.2V-12V or 24 V DC:
With this option, a real power supply for the sensor is available. The flowmeter can be powered with 8.2-12 or 24 V DC.

Total power consumption PD: max. 50mA@24V and PF / PM: max. 400mA@24V.
The voltage is selected with the three switches inside the enclosure.

- Warning: be sure that all the leads to the terminals are disconnected from the unit when the internal plastic protection cover has been removed!
- HIGH VOLTAGE 400V !! NEVER connect the mains power supply to the unit when the plastic protection cover has been removed !!!

First, remove the terminal strip(s) after which the internal plastic cover can be removed. The switches are located in the top left corner (type PD) or on the right hand (type PF / PM) as indicated:

Fig. 8: Switch setting sensor supply voltage.

Switch positions

SENSOR A	
SWITCH 1	VOLTAGE
internal	3.2 V DC
external	switch 3+4

SENSOR B	
SWITCH 2	VOLTAGE

VOLTAGE SELECTION		
SWITCH 3	SWITCH 4	VOLTAGE
on	on	8.2 V DC
on	off	12 V DC
off	off	23 V DC

Function switch 1: voltage selection sensor A - terminal 11.
Function switch 2: not available for this Model.
Function switch 3+4: the combination of these switches determine the voltage as indicated. Do move switch 1 and / or switch 2 to the OFF position to enable the selected voltage with switch $3+4$.

Page 26

4．4．3．TERMINAL CONNECTORS

For Intrinsically Safe applications：read chapter 5.

The following terminal connectors are available：

POWER SUPPLY TYPE PD／PF／PM	PULSE OUTPUT TYPE OA／OT／OR		ANALOG OUTPUT TYPE AA／AB AI／AP／AU		SENSOR SIGNAL TYPE P： PULSE INPUT			EXTERNAL RESET TYPE IB （OPTION）	
凹刃	\}	\}	\}	\}	\}	\}	刃	\}	（1）
$\begin{array}{ccc}\text { GND } & 1 & 2 \\ \perp & \mathrm{~N} & \mathrm{~L} 1\end{array}$	5 $R 1$	6 R 1	7 $1 \perp$	8 $1 \downarrow$	9 \perp	10 SIGNAL	11 $+\downarrow$		13 RESET

Fig．9：Overview of terminal connectors standard configuration F112－P and options．

REMARKS：TERMINAL CONNECTORS：

Terminal GND－01－02：Power Supply－only available with type PD／PF or PM：

TYPE	SENSOR SUPPLY	GND	rmin	02	\％	1 2 2 2			
PD 8－24V AC	8，2－12－24V max．50mA		AC	AC	\diamond	\diamond	\bigcirc	\diamond	
PD 8－30V DC	8，2－12－24V max．50mA	L－	L＋		\diamond	\diamond	\bigcirc	\checkmark	
PF 24V AC $\pm 15 \%$	8，2－12－24V max． 400 mA		AC	AC	\diamond	\diamond	\bigcirc		\bigcirc
PF 24V DC $\pm 15 \%$	8，2－12－24V max． 400 mA	L－	L＋		\diamond	\bigcirc	\checkmark		\diamond
PM 115－230V AC $\pm 15 \%$	8，2－12－24V max． 400 mA	EARTH	AC	AC	\diamond	\bigcirc	\bigcirc	\diamond	\bigcirc
Note PD	do not use a AC autotransformer（Spartrafo）without a galvanic isolation．								
Note PF／PM	The total consumption of the sensors and outputs may not exceed 400mA＠24V								
\diamond＝option									

Terminal 05-06; scaled pulse output R1:

Setup 7 (par. 3.4.4.) determines the pulse output function. The maximum pulse frequency of this output is 60 Hz . If a relay output option has been supplied, be sure that the output frequency does not exceed 5 Hz or else the life-time of the relay will be reduced significantly.

Type OA:

An active 24V DC pulse signal output is available with this option.
Max. driving capacity $50 \mathrm{~mA} @ 24 \mathrm{~V}$ per output. (Requires power supply type PD / PF / PM).

Type OR:

A mechanical relay output is available with this option.
Max. switch power 240V 0,5A per output. (Requires power supply type PF / PM).
Be sure that the output frequency does not exceed 5 Hz , else the relay life time will be reduced significantly.

Type OT:
A passive transistor output is available with this option. Max. driving capacity 300mA@50V DC.

Terminal 07-08; basic POWER SUPPLY - type PX - output loop powered:
Connect an external power supply of 8-30VDC to these terminals or a 4-20mA loop.
Do connect the "-" to terminal 7 and the " + " to terminal 8 . When power is applied to these terminals, the (optional) internal battery will be disabled / enabled automatically to extend the battery life time.

Caution! Only valid for standard passive output type AP!

Terminal 07-08 analog output (SETUP 7) :

An analog output signal proportional to the flowrate is available as standard.

Type AA:

An active $4-20 \mathrm{~mA}$ signal proportional to the flowrate is available with this option.
When the output is disabled, a 3.5 mA signal will be generated on these terminals.
Max. driving capacity 1000 Ohm @ 24VDC. (Requires power supply type PD / PF / PM).

Type AB:
An active $0-20 \mathrm{~mA}$ signal proportional to the flowrate is available with this option.
Max. driving capacity 1000 Ohm @ 24VDC. (Requires power supply type PD / PF / PM).

Type AF:
For the Intrinsically Safe floating 4-20mA signal: please read Chapter 5.

Type AI:

An isolated $4-20 \mathrm{~mA}$ signal proportional to the flowrate is available with this option. When the output is disabled, a 3.5 mA signal will be generated on these terminals.
Max. driving capacity 1000 Ohm @ 30VDC.
This option can be used with a battery powered unit but the life time of the battery is about 2-3 years.

Type AP:
A passive 4-20mA signal proportional to the flowrate is available with this option. When a power supply is connected but the output is disabled, a 3.5 mA signal will be generated.
Max. driving capacity 1000 Ohm. This output does loop power the unit as well (type PX).

Type AU:
A $0-10 \mathrm{VDC}$ signal proportional to the flowrate is available with this option. Max. load 10mA @ 10VDC. (Requires power supply type PD / PF / PM).

Terminal 09-11; Flowmeter input:

Three basic types of flowmeter signals can be connected to the unit: pulse, active pulse or sinewave (coil). The screen of the signal wire must be connected to the common ground terminal 09 (unless earthed at the sensor itself).
The maximum input frequency is approximately 10 kHz (depending on the type of signal). The input signal type has to be selected with the correct SETUP-function (read par. 3.2.3.)

Sine-wave signal (Coil):

The F112-P is suitable for use with flowmeters which have a coil output signal. Two sensitivity levels can be selected with the SETUP-function:

COIL LO: sensitivity from about 120 mVp -p.
COIL HI: sensitivity from about 20 mV p-p.
Type ZF offers for setting COIL HI : sensitivity from about $10 \mathrm{mVp}-\mathrm{p}$.
Type ZG offers for setting COIL HI : sensitivity from about $5 \mathrm{mVp}-\mathrm{p}$.

Pulse-signal NPN / NPN-LP:

The F112-P is suitable for use with flowmeters which have a NPN output signal. For reliable pulse detection, the pulse amplitude has to go below 1.2 V . Signal setting NPN-LP employs a low-pass signal noise filter, which limits the maximum input frequency - read par. 3.2.3.

Pulse-signal PNP / PNP-LP:

The F112-P is suitable for use with flowmeters which have a PNP output signal. 3.2 V is offered on terminal 11 which has to be switched by the sensor to terminal 10 (SIGNAL). For a reliable pulse detection, the pulse amplitude has to go above 1.2 V . Signal setting PNP-LP employs a low-pass signal noise filter, which limits the maximum input frequency - read par. 3.2.3.
A sensor supply voltage of $8.1,12$ or 24 V DC can be provided with power supply type PD, PF, PM. For a signal detection level of 50% of the supply voltage: please refer to "active signals".

Active signals $8.1 \mathrm{~V}-12 \mathrm{~V}$ and 24 V :
If a sensor gives an active signal, please read par. 3.2.3. The detection levels are 50% of the selected supply voltage; approximately 4 V (ACT_8.1) or 6V (ACT_12) or 12V (ACT_24). Active signal selection may well be desired in the case of power supply type PD, PF, PM being supplied for sensor supply.

Reed-switch:

The F112-P is suitable for use with flowmeters which have a reed-switch. To avoid pulse bounce from the reed-switch, it is advised to select REED LP - low-pass filter (read par. 3.2.3.)

NAMUR-signal:

The F112-P is suitable for flowmeters with an Namur signal. The standard F112-P is not able to power the Namur sensor, as an external power supply for the sensor is required. However, a 8.2 V sensor supply voltage (terminal 11) can be provided with power supply type PD, PF, PM.

Terminal 12-13: Type IB - external reset (option):
With this function the total can be reset to zero with an external switch. The Total resets only when the switch opens. When closed Total still counts but the "Clear Total" function is disabled (see chapter 2).
The input must be switched with a potential free contact to the GND-terminal number 12.

Terminal 26-31: type CB / CH / CI / CT - communication RS232 / RS485 / TTL (option)

- Full serial communications and computer control in accordance with RS232 (length of cable max. 15 meters) or RS485 (length of cable max. 1200 meters) is possible.
- Read the Modbus communication protocol and Appendix C.

Fig. 10: Overview terminal connectors communication option.
When using the RS232 communication option, terminal 27 is used for supplying the interface. Please connect the DTR (or the RTS) signal of the interface to this terminal and set it active (+12V). If no active signal is available it is possible to connect a separate supply between terminals 26 and 27 with a voltage between 8 V and 24 V .

Terminal 26-31: backlight - type ZB (option):
Note: if the unit is supplied with a power supply type PD, PF or PM, the backlight supply is integrated, so the text following is not applicable.

To power the backlight, provide a $12-24 \mathrm{~V}$ DC to terminal $26(-)$ and $27(+)$. An external trimmer 1 kOhm trimmer can be used to tune the brightness of the backlight, or if not desired, a short-cut between these terminals have to be made which will result in the maximum brightness.

Note: Intrinsically Safe as well as 4-wire RS485 communication is not possible in combination with type ZB, except if a PD, PF or PM power supply is being used.

Option type ZB: adjustable backlight

Fig. 11: Overview terminal connectors backlight option.

5. INTRINSICALLY SAFE APPLICATIONS

5.1. GENERAL INFORMATION AND INSTRUCTIONS

Cautions

- Mounting, electrical installation, start-up and maintenance of this device may only be carried out by trained personnel authorized by the operator of the facility. Personnel must read and understand this Operating Manual before carrying out its instructions.
- This device may only be operated by personnel who are authorized and trained by the operator of the facility. All instructions in this manual are to be observed.
- Ensure that the measuring system is correctly wired up according to the wiring diagrams. Protection against accidental contact is no longer assured when the housing cover is removed or the cabinet has been opened (danger of electric shock). The housing may only be opened by trained personnel.
- To maintain the degree of protection of at least IP65 in accordance with IEC 60529, certified cable entries in accordance with IEC 61241-0 must be used and correctly installed. Unused openings must be closed with suitable blanking elements.
- When the enclosure of the Indicator is made of aluminum alloy, when used in a potentially explosive atmosphere requiring apparatus of equipment protection level Ga and Da , the unit must be installed such that, even in the event of rare incidents, an ignition source due to impact or friction sparks between the enclosure and iron/steel is excluded.
- Take careful notice of the " Safety rules, instructions and precautionary measures " in the front of this manual.

Safety Instructions

- When two or more active intrinsically safe circuits are connected to the indicator, in order to prevent voltage and/or current addition, applicable to the external circuits, precautions must be taken to separate the intrinsically safe circuits in accordance with IEC 60079-11.
- For the combined connection of the different supply, input and output circuits, the instructions in this manual must be observed.
- From the safety point of view the circuits shall be considered to be connected to earth.
- For installation under ATEX directive: this intrinsically safe device must be installed in accordance with the Atex directive 94/9/EC and the product certificate KEMA 03ATEX1074 X.
- For installation under IECEx scheme: this intrinsically safe device must be installed in accordance the product certificate IECEX DEK 11.0042X.
- Exchange of Intrinsically Safe battery FWLiBAT-0xx with certificate number KEMA 03ATEX1071 U or IECEx KEM 08.0005U is allowed in Hazardous Area. See paragraph 5.4. for detailed battery replacement instructions.

Please Note

- Certificates, safety values and declaration of compliance can be found in the document named:
"Fluidwell F1.....-XI - Documentation for Intrinsic Safety".
- Special conditions for safe use mentioned in both the certificate and the installation instructions must be observed for the connection of power to both input and / or output circuits.
- When installing this device in hazardous areas, the wiring and installation must comply with the appropriate installation standards for your industry.
- Study the following pages with wiring diagrams per classification.

Label information (inside and outside the enclosure)

Indicated labels on the back cover (below) and on the inside cover (right) show the type labels for intrinsically safe certified units.
For details on usage see the separate "Fluidwell F1.....-IX Documentation for Intrinsic Safety".

Serial number and year of production

This information can be looked-up on the display:
See setup function (par. 3.2.2.) for details.

5.2. TERMINAL CONNECTORS INTRINSICALLY SAFE APPLICATIONS

The unit is classified as group IIB/IIIC by default.
Classification of the unit as group IIC is only possible under the following conditions:

- The indicator is either supplied by
- the internal supply (option -PC); or
- the external supply connected to terminals 0 and 1 (option -PD); or
- the circuit supply connected to terminals 7 and 8 (option -AP);

The maximum values for any of those circuits are those as defined for group IIB/IIIC;

- No other active external intrinsically safe circuits may be connected to the indicator, with exception of circuits connected to terminals 3 and 4 and/or terminals 5 and 6 ; the maximum values for any of those circuits are those as defined for group IIB/IIIC

Terminal connectors F112-P-XI:

Fig. 12: Overview terminal connectors XI - Intrinsically Safe applications.

Explanation Intrinsically Safe options:

Type AF - Intrinsically Safe floating 4-20mA analog output - Terminal 7-8:
A floating $4-20 \mathrm{~mA}$ signal proportional to the flowrate is available with this option.
When the output is disabled, a 3.5 mA signal will be generated.
Max. driving capacity 1000 Ohm @ 30V DC.
Note! It is required to link the minus from the analog output - terminal 7 - with a ground terminal of the unit; terminal: GND, 3, 5, 9, 12 or 15.

Type PD - Intrinsically Safe power supply and sensor supply - Terminal GND- 01 and 11.

			Terminal		
	TYPE		0		
	SENSOR SUPPLY		GND	01	02
PD	Input voltage: $8-30 V ~ D C ~$	$3,2-8,1 V$	L-	L+	internally linked with terminal 01.

Terminal 02: this terminal offers the same voltage as connected to terminal 01.
Terminal 11: this terminal offers a 3.2 V or 8.1 V to power the sensor.
This voltage is selected with the switch(es) inside the enclosure. First, remove the terminals after which the internal plastic cover can be removed.

Switch position		Switch position	
terminal 11		no function	
SWITCH 1	VOLTAGE	SWITCH 2	
on	8.1 V DC	not available	
off	3.2 V DC		

Fig. 13: Switch position voltage selection type PD-XI.

5.3 CONFIGURATION EXAMPLES

Configuration example IIB - F112-P-AF-IB-CT-OT-(PB)-(PD)-XI

Fig. 14: Configuration example 1 Intrinsically Safe

Configuration example IIB/IIIC and IIC - F112-P-AP-IB-(CT)-OT-PD-XI

Fig. 15: Configuration example 2 Intrinsically Safe.

5.4 BATTERY REPLACEMENT INSTRUCTIONS

Safety Instructions

- Fire, explosion or severe burns may result if mistreated. Do not recharge, crush, disassemble, incinerate, heat above $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$ or expose contents to water.
- Mounting, electrical installation, start-up and maintenance of this device may only be carried out by trained personnel authorized by the plant operator. Personnel must read and understand this instruction before carrying out the replacement procedure.
- Always follow the instructions listed in the supplied Battery Replacement Instruction Sheet.
- Batteries pose an environmental hazard. Return used batteries to a recycling point.

Safety instructions for hazardous areas

- Verify the correct battery is supplied: Only batteries with indicated Ex label are certified for replacement and use in hazardous areas. Batteries for use in safe areas have no Ex label. DO NOT EXCHANGE: Using the wrong type of battery can pose a SERIOUS RISK.
- For use in hazardous areas Fluidwell recommends FW-LiBAT batteries (manufactured by Fluidwell bv) only.

Battery replacement procedure

Depending on the production batch, one of two visualized Intrinsically Safe certified battery types may have been installed in the unit. They are interchangeable.

1. To replace the battery, open the unit to gain access to the back inside cover of the unit.
2. Unplug the field connectors from the back inside of the unit.
3. Remove the screw that holds the plastic inside cover.
4. Open the cover and unplug the battery connector.
5. Remove the battery from the inside of the plastic cover. Do not remove the battery clip!
6. Install the new battery and re-assemble the unit in reverse order.
7. Start-up the unit
8. MAINTENANCE
6.1. GENERAL DIRECTIONS

- Mounting, electrical installation, start-up and maintenance of the instrument may only be carried out by trained personnel authorized by the operator of the facility. Personnel must read and understand this Operating Manual before carrying out its instructions.
- The F112-P may only be operated by personnel who are authorized and trained by the operator of the facility. All instructions in this manual are to be observed.
Ensure that the measuring system is correctly wired up according to the wiring
Caution! diagrams. Protection against accidental contact is no longer assured when the housing cover is removed or the panel cabinet has been opened (danger from electrical shock). The housing may only be opened by trained personnel.
- Take careful notice of the " Safety rules, instructions and precautionary measures " in the front of this manual.

The F112-P does not require special maintenance unless it is used in low-temperature applications or surroundings with high humidity (above 90% annual mean). It is the users responsibility to take all precautions to dehumidify the internal atmosphere of the F112-P in such a way that no condensation will occur, for example by placing dry silica-gel sachet in the casing just before closing it.
Furthermore, it is required to replace or dry the silica gel periodically as advised by the silica gel supplier.

Battery life-time:

It is influenced by several issues :

- Type of sensor: read chapter 3.2.3. NPN and PNP inputs consume more energy than coil inputs.
- Input frequency: the higher the frequency, the shorter the battery life-time.
- Flowrate calculation: the lower number of pulses (SETUP 26) the shorter the battery life-time.
- Analog output signal; be sure that an external power supply is connected or that the function is disabled if not in use; or else it will have a influence on the battery life-time (SETUP 71).
- Display update: fast display update uses significantly more power; SETUP 41.
- Pulse output and communications .
- Low temperatures; the available power will be less due to battery chemistry.

Note: It is strongly advised to disable unused functions.

Check periodically:

- The condition of the casing, cable glands and front panel.
- The input/output wiring for reliability and aging symptoms.
- The process accuracy. As a result of wear and tear, re-calibration of the flowmeter might be necessary. Do not forget to re-enter any subsequent K-factor alterations.
- The indication for low-battery.
- Clean the casing with soapy-water. Do not use any aggressive solvents as these might damage the polyester coating.

6.2. REPAIR

This product cannot be repaired by the user and must be replaced with an equivalent certified product. Repairs should only be carried out by the manufacturer or his authorized agent.

APPENDIX A: TECHNICAL SPECIFICATION

GENERAL

Display	
Type	High intensity reflective numeric and alphanumeric LCD, UV-resistant.
Digits	Seven 17mm (0.67") and eleven 8mm (0.31"). Various symbols and measuring units.
Refresh rate	User definable: 8 times/sec -30 secs.
Type ZB	Transflective LCD with green LED backlight. Good readings in full sunlight and darkness. Note: only available for safe area applications.
Power requirements: 12-24V DC $+10 \%$ or type PD, PF, PM. Power consumption max. 1 Watt.	

Operating temperature	
	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$
Operational	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$
Intrinsically Safe	

Power supply	
Type PB	Lithium battery - life-time depends upon settings - up to 5 years.
Type PC	Intrinsically Safe lithium battery - life-time depends upon settings - up to 5 years.
Type PD	8 -24V AC / DC $\pm 10 \%$. Power consumption max. 10 Watt. Intrinsically safe: $16-30 \mathrm{~V} D C$; power consumption max. 0.75 Watt.
Type PF	24 V AC / DC $\pm 10 \%$. Power consumption max. 15 Watt.
Type PL	Input loop powered from sensor signal 4-20mA (type A, non IS).
Type PM	$115-230 \mathrm{~V}$ AC $\pm 10 \%$. Power consumption max. 15 Watt.
Type PX	Output loop powered: 8-30V DC. Power consumption max. 0.5 Watt.
Note PF / PM	The total consumption of the sensors`, backlight and outputs may not exceed 400mA@24V.
Note I.S. applications	For intrinsically safe applications, consult the safety values in the certificate.

Sensor excitation	
Type PB / PC / PX	3.2V DC for pulse signals and 1.2V DC for coil pick-up. Note: This is not a real sensor supply. Only suitable for pulse sensors with a very low power consumption like coils (sine wave) and reed-switches.
Type PD	1.2-3.2-8.2-12 and 24V DC - max. 50mA@24V DC
Type PD-XI	Intrinsically safe: Pulse signals: 1.2-3.2-8.2-max. 7mA@8.2V DC. Analog signals: the sensor supply voltage is according to the power supply voltage connected to terminal 1. Also terminal 2 offers the same voltage.
Type PF / PM	1.2-3.2-8.2-12 and 24V DC - max. 400mA@24V DC.

Terminal connections
Type:

Removable plug-in terminal strip. Wire max. 1.5mm2 and 2.5 mm 2 (Type PM / PF)

Data protection	
Type	EEPROM backup of all setting. Backup of running totals every minute. Data retention at least 10 years.
Pass code	Configuration settings can be pass code protected.

Hazardous area (option)	
Intrinsically safe	ATEX approval:
Type XI	II 1 G Ex ia IIB/IIC T4 Ga II 1 D Ex ia IIIC $\mathrm{T} 100^{\circ} \mathrm{C}$ Da IP6x
	IECEx approval:
	Ex ia IIB/IIC T4 Ga
	Ex ia IIIC T $100^{\circ} \mathrm{C}$ Da IP6x
Explosion proof Type XD/XF	ATEX approval ref.: <EX> II 2 GD EEx d IIB T5. Weight appr. 15kg. Dimensions of enclosure: $350 \times 250 \times 200 \mathrm{~mm}$ ($13.7^{\prime \prime} \times 9.9^{\prime \prime} \times 7.9^{\prime \prime}$) LxHxD.

Environment	
Electromagnetic compatibility	Compliant ref: EN 61326 (1997), EN 61010-1 (1993).

INPUTS

Flowmeter	
Type P	Coil/sine wave (minimum 20mVp-p or 80mVp-p - sensitivity selectable), NPN/PNP, open collector, reed-switch, Namur, active pulse signals $8-12$ and 24 V .
Frequency	Minimum 0 Hz - maximum 7 kHz for total and flowrate. Maximum frequency depends on signal type and internal low-pass filter. E.g. Reed switch with low-pass filter: max. frequency 120 Hz .
K-Factor	$0.000010-9,999,999$ with variable decimal position.
Low-pass filter	Available for all pulse signals.
Linearisation	15 positions with interpolation function; Meter-Factor 0.000001-9.999999 versus Frequency $0.001 \mathrm{~Hz}-9,999 \mathrm{~Hz}$.
Type A	(0)4-20mA - with signal calibration feature at any current within the range.
Type U	$0-10 \mathrm{~V}$ - with signal calibration feature at any voltage within the range.
Accuracy	Resolution: 14 bit.. Error < $0.025 \mathrm{~mA} / \pm 0.125 \%$ FS. Low level cut-off programmable.
Span	0.000010-9,999,999 with variable decimal position.
Update time	Four times a second.
Voltage drop	2.5 Volt.
Load impedance	3kOhm
Relationship	Linear and square root calculation.
Note	For signal type A and U: external power to sensor is required; e.g. Type PD.

Reset (option)	
Type IB	Make contact - external reset totalizer. Additional functionality to lock the RESET button of the keyboard (as long as this contact is being made).
	Duration

OUTPUTS

Analog output	
Function	transmitting linearised flowrate.
Accuracy	10 bit. Error < 0.05% - update 10 times a second. Software function to calibrate the 4.00 mA and 20.00 mA levels precisely within set-up. Load
Type AA	max. 1 kOhm
Type AB	Active 4-20mA output (requires type OA + PD, PF or PM).
Type AF	Passive floating output (requires type OA + PD, PF or output for Intrinsically Safe applications (requires PC, PD or PL).
Type AI	Passive galvanically isolated output (requires PB, PD, PF, PL or PM).
Type AP	Passive 4-20mA output - output loop powered (type PX).
Type AU	Active 0-10V output (requires type OA + PD, PF or PM).

Transistor output(s)	
Pulse output	Max. frequency 60Hz. Pulse length user definable between 7,8msec up to 2 seconds.
Function	One pulse output - transmitting linearised accumulated total.
Type OA	Active 24V DC transistor output; max. 50mA per output (requires type AA + PD, PF or PM).
Type OR	Isolated mechanic relay output; max. switch power 230V AC - $0,5 \mathrm{~A}$ (requires type PF or PM).
Type OT	Passive transistor output - not isolated. Load max. 50V DC - 300mA.

Communication option	
Functions	reading display information, reading / writing all settings.
Protocol	Modbus RTU
Speed	$1200-2400-4800-9600$ baud
Addressing	maximum 255 addresses.
Type CB	RS232
Type CH	RS485 2-wire
Type CI	RS485 4-wire
Type CT	TTL Intrinsically Safe communication.
Type CX	no communication.

OPERATIONAL

Operator functions		
Displayed functions	• linearised total and/or flowrate. 	linearised total and linearised accumulated total. total can be reset to zero by pressing the CLEAR-key twice.

Total	
Digits	7 digits.
Units	$\mathrm{L}, \mathrm{m} 3, \mathrm{GAL}$, USGAL, KG, lb, bbl, no unit.
Decimals	$0-1-2$ or 3.
Note	total can be reset to zero.

Accumulated total	
Digits	11 digits.
Units / decimals	according to selection for total.

Flowrate	7 digits.
Digits	$\mathrm{mL}, \mathrm{L}, \mathrm{m} 3, \mathrm{Gallons}, \mathrm{KG}$, Ton, $\mathrm{lb}, \mathrm{bl}, \mathrm{cf}, \mathrm{RND}, \mathrm{ft} 3, \mathrm{scf}, \mathrm{Nm} 3, \mathrm{Nl}$, igal -no units.
Units	$0-1-2$ or 3.
Decimals	$/ \mathrm{sec}-/ \mathrm{min}-/ \mathrm{hr}-/$ day.
Time units	

APPENDIX B: PROBLEM SOLVING

In this appendix, several problems are included that can occur when the F112-P is going to be installed or while it is in operation.

Flowmeter does not generate pulses:

Check:

- Signal selection SETUP - 51,
- Pulse amplitude (par. 4.4.3.),
- Flowmeter, wiring and connection of terminal connectors (par. 4.4.3.),
- Power supply of flowmeter (par. 4.4.2.).

Flowmeter generates "too many pulses":

Check:

- Settings for total and Flowrate: SETUP 11-14 and 21-27,
- Type of signal selected with actual signal generated - SETUP - 51,
- Sensitivity of coil input - SETUP - 51 and par. 4.4.3.
- Proper grounding of the F112-P - par. 4.4.1.
- Use screened wire for flowmeter signals and connect screen to terminal 9. (unless connected at sensor)

Analog output does not function properly:

Check:

- SETUP 71 - is the function enabled?
- SETUP 72 / 73: are the flow-levels programmed correctly?
- connection of the external power-supply according to the specification.

Pulse output does not function:
 Check:

- SETUP 81 - pulse per " x " quantity; is the value programmed reasonable and will the maximum output be under 20 Hz ?
- SETUP 82 - impulse width; is the external device able to recognize the selected pulse width and frequency?

Flowrate displays " 0 / zero" while there is flow (total is counting):

Check:

- SETUP 22 / 25: are the K-factor and time unit correct?
- SETUP 26 / 27: The unit has to count the number of pulses according to SETUP 26 within the time according to SETUP 27. Make sure that 27 is set to 10.0 seconds for example : the result is that the unit has at least 10 seconds time to measure the number of pulses according to SETUP 26.

Linearization does not work:

Check:

- SETUP 6G: is the function enabled?
- SETUP 6A-6F: are all M-Factors and the frequency entered correctly?

The pass code is unknown:

If the pass code is not 1234 , there is only one possibility left: call your supplier.

ALARM

When the alarm flag starts to blink an internal alarm condition has occurred. Press the "select button" several times to display the 5-digit error code. The codes are:

0001: irrecoverable display-data error: data on the display might be corrupted.
0002: irrecoverable data-storage error: the programming cycle might have gone wrong: check programmed values.
0003: error 1 and error 2 occurred simultaneously
If the alarm occurs more often or stays active for a longer time, please contact your supplier.

APPENDIX C: COMMUNICATION VARIABLES

Remarks:

- Below, an overview of the F112-P specific variables; other common variables are described in the standard table.
- All numbers are decimal numbers, unless otherwise noted.
- The following variables of the standard table (var00-var30) are not valid for this product and will be responded with value 1 : var00, 03-05, 07,08, 16-22, 24, 26-29.

CONFIGURATION VARIABLES F112-P - SETUP-LEVEL:				
VAR	DESCRIPTION	BYTES	VALUE	REMARKS
TOTAL				
$\begin{gathered} 32 \\ (20 h) \end{gathered}$	unit	1	$\begin{aligned} & \hline 0=\mathrm{L} \\ & 1=\mathrm{m} 3 \\ & 2=\mathrm{kg} \\ & 3=\mathrm{lb} \\ & 4=\text { gal } \\ & 5=\text { usgal } \\ & 6=\mathrm{bbl} \\ & 7=\text { none } \end{aligned}$	
$\begin{gathered} 33 \\ (21 \mathrm{~h}) \\ \hline \end{gathered}$	decimals	1	0...3	
$\begin{gathered} 34 \\ (22 h) \\ \hline \end{gathered}$	K-factor	3	1...9.999.999	K-f 0000001 - K-f 0000009 is allowed when decs < 6! (VAR37)
$\begin{gathered} 37 \\ (25 \mathrm{~h}) \end{gathered}$	decimals K-factor	1	0... 6	
FLOWRATE				
$\begin{gathered} 48 \\ (30 \mathrm{~h}) \end{gathered}$	unit	1	$\begin{aligned} & 0=\mathrm{mL} \\ & 1=\mathrm{L} \\ & 2=\mathrm{m} 3 \\ & 3=\mathrm{mg} \\ & 4=\mathrm{g} \\ & 5=\mathrm{kg} \\ & 6=\mathrm{ton} \\ & 7=\text { gal } \\ & 8=\mathrm{bbl} \\ & 9=\mathrm{lb} \\ & 10=\mathrm{cf} \\ & 11=\text { rev } \\ & \text { (revolutions for } \\ & \text { RPM) } \\ & 12=\text { none } \\ & 13=\mathrm{scf} \\ & 14=\mathrm{NM} 3 \\ & 15=\mathrm{NL} \\ & 16=\mathrm{p} \\ & \hline \end{aligned}$	
$\begin{gathered} 49 \\ (31 \mathrm{~h}) \end{gathered}$	time unit	1	$\begin{aligned} & 0=\text { sec } \\ & 1=\text { min } \\ & 2=\text { hour } \\ & 3=\text { day } \\ & \hline \end{aligned}$	
$\begin{gathered} 50 \\ (32 \mathrm{~h}) \end{gathered}$	decimals	1	0...3	
$\begin{gathered} 51 \\ (33 \mathrm{~h}) \\ \hline \end{gathered}$	K-factor	3	1...9.999.999	K-f 0000001 - K-f 0000009 is allowed when decs < 6! (VAR54)
$\begin{gathered} 54 \\ (36 \mathrm{~h}) \\ \hline \end{gathered}$	decimals K-factor	1	0... 6	
$\begin{gathered} 55 \\ (37 \mathrm{~h}) \\ \hline \end{gathered}$	number of pulses	1	$1 . .255$	
$\begin{gathered} 56 \\ (38 \mathrm{~h}) \\ \hline \end{gathered}$	cut-off time	2	1 .. 9999	steps of 100ms

VAR	DESCRIPTION	BYTES	value	REMARKS
DISPLAY				
$\begin{gathered} 64 \\ (40 \mathrm{~h}) \end{gathered}$	display function	1	$\begin{array}{\|l\|} \hline 0=\text { total } \\ 1=\text { flowrate } \end{array}$	
$\begin{gathered} 68 \\ (44 \mathrm{~h}) \\ \hline \end{gathered}$	set flowrate monitor	1	$0=$ operator level 1=SETUP level	
POWERMANAGEMENT				
$\begin{aligned} & 80 \\ & (50 \mathrm{~h}) \end{aligned}$	LCD update time	1	$\begin{aligned} & 0=\text { fast } \\ & 1=1 \mathrm{sec} \\ & 2=3 \mathrm{sec} \\ & 3=15 \mathrm{sec} \\ & 4=30 \mathrm{sec} \\ & 5=\text { off } \end{aligned}$	
$\begin{array}{\|l\|} \hline 81 \\ (51 \mathrm{~h}) \\ \hline \end{array}$	power-mode battery	1	$\begin{aligned} & \begin{array}{l} 0=\text { operational } \\ 1=\text { shelf } \end{array} \\ & \hline \end{aligned}$	
FLOWMETER				
$\begin{array}{\|l\|} \hline 96 \\ (60 \mathrm{~h}) \end{array}$	flowmeter signal	1	$\begin{array}{\|l\|l} \hline 0=n p n \\ 1=\text { npn-Ip } \\ \text { 2reed } \\ \text { 3=reed LP } \\ 4=\text { pnp } \\ 5=\text { =np-lp } \\ 6=\text { namur } \\ 7=\text { coil hi } \\ 8=\text { coil lo } \\ \hline \end{array}$	
LINEARISATION				
$\begin{aligned} & \hline 1024 \\ & (400 \mathrm{~h}) \end{aligned}$	linearization table entry	6	$\begin{aligned} & m=0 . .9999999 \text { / } \\ & f=0 . .99999 \end{aligned}$	INDEXED 3 bytes m-factor MS-part 3 bytes freq. LS-part. $\|m\| m\|m\| f\|f\| f \mid$ MSB............LSB
$\begin{aligned} & \hline 1038 \\ & (40 \mathrm{Eh}) \end{aligned}$	linearization on/off	1	$\begin{aligned} & \hline 0=\text { disable } \\ & 1=\text { enable } \\ & \hline \end{aligned}$	
$\begin{aligned} & 1039 \\ & (40 \mathrm{Fh}) \\ & \hline \end{aligned}$	Decimals	1	0, 1, 2, 3	Number of decimals
ANALOG OUTPUT				
$\begin{aligned} & \hline 112 \\ & (70 \mathrm{~h}) \end{aligned}$	analog output	1	$\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$	
$\begin{aligned} & \hline 113 \\ & (71 \mathrm{~h}) \end{aligned}$	minimum rate	3	0..9999999	unit, time, decimals acc. var48-50
$\begin{aligned} & \hline 116 \\ & (74 \mathrm{~h}) \\ & \hline \end{aligned}$	maximum rate	3	$0 . .9999999$	unit, time, decimals acc. var48-50
$\begin{aligned} & \hline 119 \\ & (77 \mathrm{~h}) \end{aligned}$	cut off percentage	1	$0 . .99$	steps of 0.1\%
$\begin{array}{\|l} \hline 120 \\ (78 \mathrm{~h}) \\ \hline \end{array}$	tune minimum rate	2	$0 . .9999$	
$\begin{aligned} & \hline 122 \\ & (7 \mathrm{Ah}) \\ & \hline \end{aligned}$	tune maximum rate	2	$0 . .9999$	
$\begin{array}{\|l} \hline 99 \\ (63 \mathrm{~h}) \\ \hline \end{array}$	filter	1	0.... 99	
PULSE OUTPUT				
$\begin{aligned} & \hline 128 \\ & (80 \mathrm{~h}) \end{aligned}$	impulse width	1	$\begin{aligned} & 0=\text { off } \\ & 1=\text { short } \\ & 2=\text { long } \end{aligned}$	
$\begin{array}{\|l\|} \hline 129 \\ (81 \mathrm{~h}) \end{array}$	pulse per X quantity	3	1..9999999	unit, decimals acc. var32-33
OTHERS				
$\begin{array}{\|l\|} \hline 168 \\ \text { (A8h) } \end{array}$	pass code	2	xxxx	read only!

Page 47

VAR	DESCRIPTION	BYTES	VALUE	REMARKS
170 AAh	tagnumber	3	$0 . .9999999$	Other vars: see standard table

OTHER F112-P VARIABLES FOR COMMUNICATION

TOTAL - variable number 566 (236h) - 6 bytes
Read total: The value of total read using RS communications might differ from the value that appears on the display. This is due to the fact that the display can only display up to seven digits (for example when two decimals are selected for total and total has a value of 123456,78 the display will show 23456,78 while communication will read a "total" of 12345678 and a "total decimals" of 2).
Write total: total can only be cleared. This means writing a value different from 0 will result in the reply of an error message. Only writing 6 bytes of zero's to total will be accepted.

ACCUMULATED TOTAL - variable number 560 (230h) - 6 bytes
Read acc. total: A difference between the read value and the display value, as explained for "Read total", might appear here too.
Write acc. total: Not possible.
When reading or writing total or accumulated total it should be noted that the used values are given including the decimals. This means that a read/write to one of these variables should be accompanied with a read/write to the variable that holds the number of decimals for this variable:

Example: read var. 566 for total:

Read var. 33 for total decimals and calculate the real value of total by multiplying total with $10^{\text {-(total decimals) }}$

FLOWRATE - variable number 572 (23Ch) - 4 bytes
Read flowrate: The value difference as mentioned with total/acc. total might appear here too.
Write flowrate: Not possible.

Page 48
NOTES

Left blank intentionally

INDEX OF THIS MANUAL

accumulated Total 8
actual settings 51, 52alarm
analogcut-off value19
disable/enable 19
filter 20
floating output. 37
flowrate max. 19
flowrate min. 19
intrinsically safe output. 37
output loop powered. 29
tune / calibrate 19
Analog output 29
Backlight 34
battery life time 16, 41
Clear Total 8
Coil-signal 31
communication 34
family-specific variables 46
Communication
address 21
baudrate 21
mode 21
Configuration 10
Dimension enclosures 23, 24
display
function 16
display update 16
external reset option 33
flowmeter signal 17
Flowmeter input 31
flowrate
calculation 15
cut-off time 15
decimals 15
decimals k-factor 15
k-factor 15
measuring unit 15
time unit 15
Flowrate 8
Frequency 18
Installation 22
Intrinsic safety 35
Intrinsically Safe options 37
IP classification 22
keys 7
Linearisation function 18
low-battery 9
main-function 11
maintenance 41
Meter Factor 18
model 21
NAMUR-signal 33
Operator level 8
pass code 21, 45
power supply 27, 29
power supply intrinsically safe 37
Problem solving 45
pulse output
pulse length / period time 20
pulse per quantity 20
Pulse output 28
Pulse-signal active pulse 32
Pulse-signal NPN/PNP 31, 32
Reed-switch: 33
serial number 21
SETUP-leve 10
shelf mode 16
subfunction 11
tagnumber 21
Technical specification 42
terminal connectors 27
total
decimals 14
decimals k-factor 14
k-factor 14
measuring unit 14
Total 8
version software 21
Voltage selection sensor 26, 37
LIST OF FIGURES IN THIS MANUAL
Fig. 1: Typical application for the F112-P. 5
Fig. 2: Control Panel. 7
Fig. 3: Example of display information during process. 8
Fig. 4: Example of low-battery alarm 8
Fig. 5: Dimensions aluminum enclosures 22
Fig. 6: Dimensions GRP enclosures 23
Fig. 7: Grounding aluminum enclosure with type PM 115-230V AC 24
Fig. 8: Switch setting sensor supply voltage 25
Fig. 9: Overview of terminal connectors standard configuration F112-P and options 26
Fig. 10: Overview terminal connectors communication option. 33
Fig. 11: Overview terminal connectors backlight option 33
Fig. 12: Overview terminal connectors XI - Intrinsically Safe applications 35
Fig. 13: Switch position voltage selection type PD-XI 36
Fig. 14: Configuration example 1 Intrinsically Safe 37
Fig. 15: Configuration example 2 Intrinsically Safe 38

LIST OF CONFIGURATION SETTINGS
 SETTING \quad DEFAULT \quad DATE: \quad DATE:

1 - TOTAL	Enter your settings here		
11 unit	L		
12 decimals	0000000		
13 K-factor	0000001		
14 decimals K-factor	0		

2 - FLOWRATE

21 unit	L		
22 time unit	$/$ min		
23 decimals	0000000		
24 K-factor	0000001		
25 decimals K-factor	0		
26 calculation $/$ pulses	010		
27 cut-off time	30.0 sec.		

3 - DISPLAY

31 function	total		

4 - POWER MANAGEMENT			
41 LCD-new	1 sec.		
42 mode	operational		

5 - FLOWMETER			
51 signal	coil-lo		

6 6- LINEARISATION			
61 frequency	0.0 Hz		
M-Factor	1.000000		
62 frequency	0.0 Hz		
M-Factor	1.000000		
63 frequency	0.0 Hz		
M-Factor	1.000000		
64 frequency	0.0 Hz		
M-Factor	1.000000		
65 frequency	0.0 Hz		
M-Factor	1.000000		
66 frequency	0.0 Hz		
M-Factor	1.000000		
67 frequency	0.0 Hz		
M-Factor	1.000000		
68 frequency	0.0 Hz		
M-Factor	1.000000		
69 frequency	0.0 Hz		
M-Factor	1.000000		

SETTING	DEFAULT	DATE:	DATE:
6A frequency	0.0 Hz		
M-Factor	1.000000		
6B frequency	0.0Hz		
M-Factor	1.000000		
6C frequency	0.0Hz		
M-Factor	1.000000		
6D frequency	0.0 Hz		
M-Factor	1.000000		
6E frequency	0.0Hz		
M-Factor	1.000000		
6F frequency	0.0Hz		
M-Factor	1.000000		
6G linearization	disabled		
6 H decimals frequency	1111.1		
7 - ANALOG OUTPUT			
71 output	disabled		
72 min . flowrate 4-mA	0000000		
73 max. flowrate 20mA	9999999		
74 cut off percentage	0.0\%		
75 tune min - 4mA	0208		
76 tune max - 20mA	6656		
77 filter	01 (off)		
8 - PULSE OUTPUT			
81 impulse width	000 periods		
82 pulse per	0001000		
9-COMMUNICATION			
91 baud-rate	2400		
92 address	1		
93 mode	BUS-ASC		
A - OTHERS			
A1 model	F112-P	F112-P	F112-P
A2 software version			
A3 serial number			
A4 pass code	0000		
A5 tagnumber	0000000		

