F131-A

BATCH-CONTROLLER

Signal input flowmeter type A: (0)4-20mA.
Status inputs: start and stop.
Signal outputs: two control outputs for two stage control, or one control output and pulse output ref. total and 4-20mA ref. flowrate.

Options: Intrinsically Safe, Modbus communication.

$$
\text { C } \in \mathbb{x} \text { 区ax }
$$

SAFETY INSTRUCTIONS

- Any responsibility is lapsed if the instructions and procedures as described in this manual are not followed.
- LIFE SUPPORT APPLICATIONS: The F131-A is not designed for use in life support appliances, devices, or systems where malfunction of the product can reasonably be expected to result in a personal injury. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify the manufacturer and supplier for any damages resulting from such improper use or sale.
- Electro static discharge does inflict irreparable damage to electronics! Before installing or opening the unit, the installer has to discharge himself by touching a well-grounded object.
- This unit must be installed in accordance with the EMC guidelines (Electro Magnetic Compatibility).
- Do connect a proper grounding to the aluminum casing (type HA/HU) as indicated if the F131-A has been supplied with the 115-230V AC power-supply type PM. The green/yellow wire between the back-casing and removable terminal-block may never be removed.
- Intrinsically Safe applications: follow the instructions as mentioned in Chapter 5 and consult "Fluidwell F1.....-XI - Documentation for Intrinsic Safety".

DISPOSAL

At the end of its life this product should be disposed of according to local regulations regarding waste electronic equipment. If a battery is present in this product it should be disposed of separately. The separate collection and recycling of your waste equipment will help to conserve natural resources and ensure that it is recycled in a manner that protects the environment.

SAFETY RULES AND PRECAUTIONARY MEASURES

- The manufacturer accepts no responsibility whatsoever if the following safety rules and precautions instructions and the procedures as described in this manual are not followed.
- Modifications of the F131-A implemented without preceding written consent from the manufacturer, will result in the immediate termination of product liability and warranty period.
- Installation, use, maintenance and servicing of this equipment must be carried out by authorized technicians.
- Check the mains voltage and information on the manufacturer's plate before installing the unit.
- Check all connections, settings and technical specifications of the various peripheral devices with the F131-A supplied.
- Open the casing only if all leads are free of potential.
- Never touch the electronic components (ESD sensitivity).
- Never expose the system to heavier conditions than allowed according to the casing classification (see manufacture's plate and chapter 4.2.).
- If the operator detects errors or dangers, or disagrees with the safety precautions taken, then inform the owner or principal responsible.
- The local labor and safety laws and regulations must be adhered to.

ABOUT THE OPERATION MANUAL

This operation manual is divided into two main sections:

- The daily use of the unit is described in chapter 2 "Operation". These instructions are meant for users.
- The following chapters and appendices are exclusively meant for electricians/technicians. These provide a detailed description of all software settings and hardware installation guidance.

This operation manual describes the standard unit as well as most of the options available. For additional information, please contact your supplier.

A hazardous situation may occur if the F131-A is not used for the purpose it was designed for or is used incorrectly. Please carefully note the information in this operating manual indicated by the pictograms:

A "warning" indicates actions or procedures which, if not performed correctly, may lead to personal injury, a safety hazard or damage of the F131-A or connected instruments.

A "caution" indicates actions or procedures which, if not performed correctly, may lead to personal injury or incorrect functioning of the F131-A or connected instruments.

A "note" indicates actions or procedures which, if not performed correctly, may indirectly
Note! affect operation or may lead to an instrument response which is not planned.

Hardware version	$:$	02.01.xx
Software version	$:$	02.01.xx
Manual	$:$	HF131AEN_v0501_05
© Copyright 2012	$:$	Fluidwell bv-The Netherlands.

Information in this manual is subject to change without prior notice. The manufacturer is not responsible for mistakes in this material or for incidental damage caused as a direct or indirect result of the delivery, performance or use of this material.
© All rights reserved. No parts of this publication may be reproduced or used in any form or by any means without written permission of your supplier.

CONTENTS MANUAL

Safety instructions 2
Disposal 2
Safety rules and precautionary measures 2
About the operation manual 3
Contents manual 4

1. Introduction 5
1.1. System description of the F131-A 5
2. Operational 7
2.1. General 7
2.2. Control panel. 7
2.3. Operator information and functions 8
3. Configuration 10
3.1. Introduction 10
3.2. Programming SETUP-level 10
3.2.1. General 10
3.2.2. Overview functions SETUP level 13
3.2.3. Explanation OF SETUP-functions. 14
1 - Preset 14
2 - Flowrate 15
3 - Overrun 16
4 - Display 16
5 - Power management 16
6 - Flowmeter 17
7 - Analog output. 19
8 - Relay output. 21
9 - Communication (optional). 22
A - Others. 22
4. Installation 23
4.1. General directions 23
4.2. Installation / surrounding conditions 23
4.3. Dimensions- Enclosure 24
4.4. Installing the hardware 26
4.4.1. Introduction 26
4.4.2. Voltage selection sensor supply 27
4.4.3. Terminal connectors 28
5. Intrinsically safe applications. 35
5.1. General information and instructions 35
5.2. Terminal connectors Intrinsically Safe applications 36
5.3 Configuration Examples 38
5.4 Battery replacement instructions 41
6. Maintenance 42
6.1. General directions 42
Appendix A: Technical specification 43
Appendix B: Problem solving 46
Appendix C: Communication variables 47
Index of this manual. 51
List of figures in this manual Fout! Bladwijzer niet gedefinieerd.

1. INTRODUCTION

1.1. SYSTEM DESCRIPTION OF THE F131-A

Functions and features

The batch controller model F131-A is a microprocessor driven instrument designed for batching and filling of small batch sizes up to large quantities as well as displaying the flowrate, total and accumulated total.
This product has been designed with a focus on:

- ultra-low power consumption to allow long-life battery powered applications (type PB / PC),
- intrinsic safety for use in hazardous applications (type XI),
- several mounting possibilities with ABS or aluminum enclosures for harsh industrial surroundings,
- ability to process all types of flowmeter signals,
- transmitting possibilities with analog / pulse and communication (option) outputs.

Flowmeter input

This manual describes the unit with a (0)4-20mA input for the flowmeter "-A version". Other versions are available to process pulse or $0-10 \mathrm{~V}$ flowmeter signals.
One flowmeter with a (0)4-20mA output can be connected to the F131-A. To power the sensor, several options are available.

Standard outputs

- Two transistor or relay (option) outputs: for two-stage control or one stage control with pulse output. The configurable pulse output offers a scaled pulse mirroring a certain totalized quantity. Maximum frequency 60 Hz .; the pulse length can be set from $7,8 \mathrm{msec}$ up to 2 seconds.
- Configurable passive linear $4-20 \mathrm{~mA}$ analog output with 10 -bits resolution mirroring the actual flowrate. Flowrate levels as well as the minimum and maximum signal output can be tuned.

Fig. 1: Typical application for the F131-A.

Configuration of the unit

The F131-A was designed to be implemented in many types of applications. For that reason, a SETUP-level is available to configure your F131-A according to your specific requirements.
SETUP includes several important features, such as Span, measurement units, signal selection etc. All setting are stored in EEPROM memory and will not be lost in the event of power failure or a drained battery.
To extend the battery-life time (option), please make use of the power-management functions as described in chapter 3.2.3.

Display information

The unit has a large transflective LCD with all kinds of symbols and digits to display measuring units, status information, trend-indication and key-word messages.
A backup of the total and accumulated total in EEPROM memory is made every minute.

Options

The following options are available: isolated or active $4-20 \mathrm{~mA} / 0-10 \mathrm{~V} / 0-20 \mathrm{~mA}$ analog output, full Modbus communication RS232/485 (also battery powered), intrinsic safety, mechanical relay or active outputs, power- and sensor-supply options, panel-mount, wall-mount and weather-proof enclosures, flame proof enclosure.

2. OPERATIONAL

2.1. GENERAL

- The F131-A may only be operated by personnel who are authorized and trained by the operator of the facility. All instructions in this manual are to be observed.

Caution!

- Take careful notice of the "Safety rules, instructions and precautionary measures " in the front of this manual.

This chapter describes the daily use of the F131-A. This instruction is meant for users / operators.

2.2. CONTROL PANEL

The following keys are available:

Fig. 2: Control Panel.

Functions of the keys

PROG This key is used to program and save new values or settings.
ENTER It is also used to gain access to SETUP-level; please read chapter 3.

This key is used to START the batch process.
The arrow-key - is used to increase a value after PROG has been pressed or to configure the unit; please read chapter 3.

Press STOP to "PAUSE" the batch process. When this key is pressed twice, the process is completely finished and can't be continued. STOP is also used to select Total and accumulated total. After PROG has been pressed, the arrow-key (is used to select a value

2.3. OPERATOR INFORMATION AND FUNCTIONS

In general, the F131-A will always function at Operator level. The information displayed is dependant upon the SETUP-settings. The signal generated by the connected flowmeter is measured by the F131-A in the background, whichever screen refresh rate setting is chosen. After pressing a key, the display will be updated very quickly during a 30 second period, after which it will slow-down again.

- To enter a batch quantity

To change the PRESET-value, following procedure must be followed:

1) press PROG: the word "PROGRAM" will be flashing,
2) use to select the digits and to increase that value,
3) set the new PRESET-value by pressing ENTER.

Fig. 3: Example display information during programming preset value.
When data is altered but ENTER has not been pressed yet, then the alteration can still be cancelled by waiting for 20 seconds or by pressing ENTER during three seconds: the former value will be reinstated. The PRESET-value can be used time after time till a new value is programmed.

Please note that alterations will only be set after ENTER has been pressed!

- Batch maximum

When you program a new value which is not valid - the batch size is too large - the decreasesign ${ }^{\vee}$ will be displayed while you are programming; the new value will not be accepted!

- Starting up the batch process

The batch process can only be started up when "READY" is displayed. The batch process is started-up by pressing the START-key. Depending on the SETUP-settings, one or two relays will be switched. The arrows at the display indicate if the ACTUAL-value is / was counting up or down.

Fig. 4: Example display information during and at the end of the process.

- Interrupting and ending the batch process

When STOP is pressed once, the batch process will be temporarily interrupted; the actual values are not lost. At the display, the word "PAUSE" will be flashing. From this stage, the batch process can be resumed with the START-key.
The process can be ended entirely at all times by pressing STOP twice in which case the actual values are "lost" and the system returns to steady state: the batch can not be resumed.

Fig. 5: Example display information when interrupted.

- Flowrate indication

Remark: this function might not be available: it depends on the configuration of the unit..
During batching, the actual flowrate will be displayed on the bottom-line of the display. It depends on the configuration settings if flowrate is displayed continuously or alternating with the preset value.

After batching, following functions are available:

- Clear total

The value for total can be re-initialized. To do so, select Total and press PROG followed by STOP - STOP. After pressing STOP once, the flashing text "PUSH STOP" is displayed.
To avoid re-initialization at this stage, press another key than STOP or wait for 20 seconds. Re-initialization of total DOES NOT influence the accumulated total.

- Display accumulated total

When the STOP-key is pressed, total and accumulated total are displayed. The accumulated total cannot be re-initialized. The value will count up to $99,999,999,999$. The unit and number of decimals are displayed according to the configuration settings for preset.

- Low-battery alarm

When the battery voltage drops, it must be replaced. At first "low-battery" will flash, but as soon as it is displayed continuously, the battery MUST be replaced shortly after! Only official batteries may be used, or else the guarantee will be terminated. The remaining lifetime after the first moment of indication is generally several days up to some weeks.

Fig. 6: Example of low-battery alarm.

- Alarm 01-03

When "alarm" is displayed, please consult Appendix B: problem solving.

3. CONFIGURATION

3.1. INTRODUCTION

This and the following chapters are exclusively meant for electricians and non-operators. In these, an extensive description of all software settings and hardware connections are provided.

- Mounting, electrical installation, start-up and maintenance of the instrument may only be carried out by trained personnel authorized by the operator of the facility. Personnel must read and understand this Operating Manual before carrying out its instructions.
- The F131-A may only be operated by personnel who are authorized and trained by the operator of the facility. All instructions in this manual are to be observed.
- Ensure that the measuring system is correctly wired up according to the wiring diagrams. The housing may only be opened by trained personnel.
- Take careful notice of the " Safety rules, instructions and precautionary measures " in the front of this manual.

3.2. PROGRAMMING SETUP-LEVEL

3.2.1. GENERAL

Configuration of the F131-A is done at SETUP-level. SETUP-level is reached by pressing the PROG/ENTER key for 7 seconds; at which time, both arrows $\hat{*}$ will be displayed. In order to return to the operator level, PROG will have to be pressed for three seconds. Alternatively, if no keys are pressed for 2 minutes, the unit will exit SETUP automatically.
SETUP can be reached at all times while the F131-A remains fully operational.
Note: A pass code may be required to enter SETUP. Without this pass code access to SETUP is

To enter SETUP-level:

Matrix structure SETUP-level:

SCROLLING THROUGH SETUP-LEVEL

Selection of function-group and function:
SETUP is divided into several function groups and functions.

Each function has a unique number, which is displayed below the word "SETUP" at the bottom of the display. The number is a combination of two figures. The first figure indicates the function-group and the second figure the sub-function. Additionally, each function is expressed with a keyword.

After selecting a sub-function, the next main function is selected by scrolling through all "active" subfunctions (e.g. $1^{\bullet}, 11^{\bullet}, 12^{\star}, 13^{\bullet}, 14^{\bullet}, 1^{\bullet}, 2^{\bullet}, 3^{\bullet}, 31_{\text {etc. }}$).

To change or select a value:

To change a value, use to select the digits and Δ to increase that value.
To select a setting, both \bullet and $>$ can be used.
If the new value is invalid, the increase sign \bullet or decrease-sign ${ }^{\nabla}$ will be displayed while you are programming.

When data is altered but ENTER is not pressed, then the alteration can still be cancelled by waiting for 20 seconds or by pressing ENTER for three seconds: the PROG-procedure will be left automatically and the former value reinstated.

Note: alterations will only be set after ENTER has been pressed!

To return to OPERATOR-level:

In order to return to the operator level, PROG will have to be pressed for three seconds. Also, when no keys are pressed for 2 minutes, SETUP will be left automatically.

3.2.2. OVERVIEW FUNCTIONS SETUP LEVEL

SETUP FUNCTIONS AND VARIABLES

1	PRESET		
	11	UNIT	L-m3-kg - lb - GAL - USGAL - bbl - no unit
	12	DECIMALS	0-1-2-3 (Ref: displayed value)
	13	SPAN	$0.000001-9,999,999$ unit/second
	14	DECIMALS SPAN	0-6
	15	BATCH MAXIMUM	$\mathrm{X}, \mathrm{XXX}, \mathrm{XXX}$ quantity
2	FLOWRATE		
	21	UNIT	mL-L-m3-mg-g-kg - ton - GAL - bbl - lb - cf - REV no unit - scf - Nm3-NL - P
	22	TIME UNIT	sec - min - hour - day
	23	DECIMALS	0-1-2-3 (Ref: displayed value)
	24	SPAN	0.000001-999,999 unit/time-unit
	25	DECIMALS SPAN	0-6
3	OVERRUN		
	31	OVERRUN	disable - enable
	32	TIME	0.1 - 999.9 seconds
4	DISPLAY		
	41	DISPLAY	increase - decrease
	42	FLOWRATE	off - batch - toggle
5	POWER MANAGEMENT		
	51	LCD UPDATE	fast - 1 sec - 3 sec - $15 \mathrm{sec}-30 \mathrm{sec}$ - off
	52	BATTERY MODE	operational - shelf
6	FLOWMETER		
	61	FORMULA	interpolation, square root
	62	FILTER	00-99
	63	CUT-OFF	0.0-99.9\%
	64	CALIBRATE LOW	(0)4mA
	65	CALIBRATE HIGH	20 mA
7	ANALOG		
	71	OUTPUT	disable - enable
	72	$4 \mathrm{~mA} / 0 \mathrm{~V}$	0000.000-9,999,999
	73	$20 \mathrm{~mA} / 10 \mathrm{~V}$	0000.000-9,999,999
	74	CUT-OFF	0.0-9.9\%
	75	TUNE MIN - 4mA / OV	0-9,999
	76	TUNE MAX- 20mA / 10V	0-9,999
	77	FILTER	00-99
8	RELAYS		
	81	RELAYS	1-step / 2-step
	82	PRECLOSE	$\mathrm{X}, \mathrm{XXX}, \mathrm{XXX}$ quantity
	83	PERIOD TIME	0-250
	84	IMPULSE PER	X, XXX, XXX quantity
	85	IMPULSE ACCORDING	total - batch
9	COMMUNICATION		
	91	SPEED / BAUDRATE	1200-2400-4800-9600
	92	ADDRESS	1-255
	93	MODE	ASCII - rtu - off
A	OTHERS		
	A1	TYPE / MODEL	
	A2	SOFTWARE VERSION	
	A3	SERIAL NO.	
	A4	PASSWORD	0000-9999
	A5	TAGNUMBER	0000000-9999999

3.2.3. EXPLANATION OF SETUP-FUNCTIONS

1-PRESET	
MEASUREMENT UNIT 11	SETUP - 11 determines the measurement unit for preset, total, accumulated total and pulse output. The following units can be selected: $\mathrm{L}-\mathrm{m} 3-\mathrm{kg}-\mathrm{lb} .-\mathrm{GAL}-\mathrm{USGAL}-\mathrm{bbl}-\quad \text { (no unit). }$ Alteration of the measurement unit will have consequences for operator and SETUP-level values. Please note that the K-factor has to be adapted as well; the calculation is not done automatically.
$\begin{aligned} & \text { DECIMALS } \\ & 12 \end{aligned}$	The decimal point determines for preset, total, accumulated total and pulse output the number of digits following the decimal point. The following can be selected: $0000000-111111.1-22222.22-3333.333$
$\begin{array}{\|l} \hline \text { SPAN } \\ 13 \end{array}$	With the span, the flowmeter signal is converted to a quantity. The span for Preset is determined on the basis of the measurement unit (setting 11) and the flowrate per second at 20 mA . Enter the span in whole numbers (decimals are set with SETUP 14). The more accurate the span, the more accurate the functioning of the system will be. Example 1: Calculating the span for Preset. Let us assume that the flowmeter generates 20 mA at a flowrate of 2,481.3 Liters/minute and the selected unit is "cubic meters / m3". The rate per second is $2,481.3 \div 60$ is $41.355 \mathrm{~L} / \mathrm{sec}$. This is $0.041355 \mathrm{~m} 3 / \mathrm{sec}$. , which is the span. Enter for SETUP - 13: "041355" and for SETUP - 14 - decimals span "6". Example 2: Calculating the span for Preset Let us assume that the flowmeter generates 20 mA at a rate of 652.31 USGAL per hour, the selected unit is barrels. There are 42 gallons in one barrel; so the rate is 652.31/42 is 15.53119 barrels/hour. This is 0.0043142 barrels/second, which is the span. Enter for SETUP - 13: "004314" and for SETUP - 14 "6".
$\begin{aligned} & \text { DECIMALS SPAN } \\ & 14 \end{aligned}$	This setting determines the number of decimals for the Span (SETUP 13). The following can be selected: $0-1-2-3-4-5-6$ Please note that this function influences the accuracy of the Span indirectly. This setting has NO influence on the displayed number of digits for preset (SETUP 12)!
BATCH MAXIMUM 15	This function limits the operator to enter a new preset-value which is more as the entered batch maximum.

2 - FLOWRATE

The settings for prese can be used for each The display update tim Note: these settings	lowrate are entirely separate. In this way, different units of measurement bic meters for total and liters for flowrate. flowrate is one second or more. luence the analog output.
MEASUREMENT UNIT 21	SETUP - 21 determines the measurement unit for flowrate. The following units can be selected: $\begin{aligned} & m L-L-m 3-m g-g-k g-t o n-G A L-b b l-l b-c f-R E V-\text { no unit - } \\ & \text { scf-Nm3-NL-P } \end{aligned}$ Alteration of the measurement unit will have consequences for operator and SETUP-level values. Please note that the K-factor has to be adapted as well; the calculation is not done automatically.
$\begin{array}{\|l} \hline \text { TIME UNIT } \\ 22 \\ \hline \end{array}$	The flowrate can be calculated per second (SEC), minute (MIN), hour (HR) or day (DAY).
$\begin{aligned} & \hline \text { DECIMALS } \\ & 23 \end{aligned}$	This setting determines for flowrate the number of digits following the decimal point. The following can be selected: $00000-1111.1-2222.22-3333.333$
$\begin{array}{\|l\|} \hline \text { SPAN } \\ 24 \end{array}$	With the span, the flowmeter signal is converted to a quantity. The span for flowrate is determined on the basis of the selected measurement unit and time unit at 20 mA . Enter the span in whole numbers (decimals are set with SETUP 25). The more accurate the span, the more accurate the functioning of the system will be. Example 1 Calculating the span for flowrate Let us assume that the flowmeter generates 20 mA at a flowrate of 2,481.3 Liters/minute, the selected unit is "Liters" and time unit "minute". The span is 2481.3 Enter for SETUP - 24: "248130" and for SETUP - 25 decimals span " 2 ". Example 2 Calculating the span for flowrate Let us assume that the flowmeter generates 20mA at a rate of 652.31 USGAL per hour, the selected unit is USG and the time unit is minute. The span is 652.31 / 60 minutes is 10.87183 (GPM). Enter for SETUP - 24: "108718" and for SETUP - 25 " 4 ".
$\begin{aligned} & \text { DECIMALS SPAN } \\ & 25 \end{aligned}$	This setting determines the number of decimals for the Span (SETUP 24). The following can be selected: 0-1-2-3-4-5-6 Please note that this function influences the accuracy of the Span indirectly. This setting has NO influence on the displayed number of digits for flowrate (SETUP 23)!

3 -OVERRUN	
Overrun can occur at the end of the batch process, as a result of slowness of a valve / pump. Consequently, the accuracy is less. With this function, the F131-A analyses the actual overrun characteristic after every batch. This information is used to correct the overrun automatically.	
OVERRUN	
31	For an accurate overrun correction, it is necessary that the flow meter meets certain technical demands, such as "high resolution" and shows no "false" overrun due to a slow update time. Do not enable this function if the flow meter does not meet these technical demands.
OVERRUN TIME T2	The overrun characteristic of the system will be analyzed during a certain time after the batch. In this way, false signal generated through leakage are eliminated. Enter here the expected time needed by the system to stop a batch. It is advisable to provide extra time in order to avoid an incorrect overrun correction or false leakage alarms. Note that the next batch can only be started after elapsing of this overrun time! The minimum overrun time is 0.1 second, maximum 999.9 seconds.

4 - DISPL_AY	
DISPLAY	The large 17mm digits can be set to display the actual batched quantity (increase) OR to display the remaining quantity to be batched (decrease).
41	This setting determines if the calculated flowrate will be displayed. Three setting can be set: FLOWRATE Off: flowrate will not be displayed
- batch: after pressing start, the flowrate will be displayed till the end of	
the batch. In this case, we advise you to set setting 41 to "decrease"	
toggle: flowrate is displayed alternating with the preset value.	

5 - POWER MANAGEMENT

When used with the internal battery (type PB / PC), the user can expect reliable measurement over a long period of time. The F131-A has several smart power management functions to extend the battery life time significantly. Two of these functions can be set:

LCD NEW	
$\mathbf{5 1}$	The calculation of the display-information influences the power consumption significantly. When the application does not requir display update, it is strongly advised to select a slow refresh rat Please understand that NO information will be lost; the input sig processed and the output signals will be generated in the normal The following can be selected:
Fast - $1 \mathrm{sec}-3 \mathrm{sec}-15 \mathrm{sec}-30 \mathrm{sec}-$ off.	
Example 3:Battery life-time battery life-time with a FAST update: about 3 years. battery life-time with a 1 sec update: about 7 years.	

Note: after a button has been pressed by the operator - the display refresh rate will always switch to FAST for 30 seconds. When "OFF" is selected, the display will be switched off after 30 seconds and will be switched on as soon as a button has been pressed.

Note!

BATTERY-MODE
52

The unit has two modes: operational or shelf.
After "shelf" has been selected, the unit can be stored for several years; it will not count pulses, the display is switched off but all settings and totals are stored. In this mode, power consumption is extremely low.
To wake up the unit again, press the SELECT-key twice.

6 - FLOWMETER

$\begin{array}{\|l\|} \hline \text { SIGNAL } \\ 61 \end{array}$	The F131-A can process the $4-20 \mathrm{~mA}$ signal in two ways: - Interpolation: the signal is processed linear $R=S \times I$ - Square root: for differential pressure $R=S \sqrt{ } I$ where: $\mathrm{R}=$ Rate: the calculated flowrate $\mathrm{S}=$ Span: the maximum flowrate at 20 mA . The span is programmed with setting 24 for flowrate and with setting 13 for total. I = Input: the scaled analog value; in these formulas value 0 (zero) for (0) 4 mA and value 1 (one) for 20 mA .			
$\begin{array}{\|l} \hline \text { FILTER } \\ 62 \end{array}$	The analog output signal of a flowmeter does mirror the actual flow. This signal is measured several times a second by the F131-A. The value measured is a "snap-shot" of the real flow as it will be fluctuating. With the help of this digital filter a stable and accurate reading can be obtained while the filter level can be set to a desired value. The filter principal is based on three input values: the filter level (01-99), the last measured analog value and the last average value. The higher the filter level, the longer the response time on a value change will be. Below, several filter levels with there response times are indicated:			
Filter value	RESPONSE TIME ON STEP CHANGE OF ANALOG VALUE. TIME IN SECONDS			
	50\% INFLUENCE	75\% INFLUENCE	90\% INFLUENCE	99\% INFLUENCE
01	filter disabled	filter disabled	filter disabled	filter disabled
02	0.3 seconds	0.5 seconds	1.0 seconds	1.8 seconds
03	0.5 seconds	1.0 seconds	1.5 seconds	3 seconds
05	1.0 seconds	1.8 seconds	2.8 seconds	5.3 seconds
10	1.8 seconds	3.5 seconds	5.6 seconds	11 seconds
20	3.5 seconds	7.0 seconds	11 seconds	23 seconds
30	5.3 seconds	10 seconds	17 seconds	34 seconds
50	8.8 seconds	17 seconds	29 seconds	57 seconds
75	13 seconds	26 seconds	43 seconds	86 seconds
99	17 seconds	34 seconds	57 seconds	114 seconds
Continued next page >>>				

6 - FLOWMETER (CONTINUED)				
$\begin{aligned} & \text { CUT-OFF } \\ & 63 \end{aligned}$		To ignore e.g. leakage of the flow or vibration, a low-flow cut-off can be set as percentage over the full range of 16 mA (or $20 \mathrm{~mA} / 10 \mathrm{~V}$). When the analog value is less then required with this setting, the signal will be ignored. The cut-off value can be programmed is the range 0.0-99.9\%. Examples:		
FUNCTION (setup 61)	Span (setup 13/24)	Required CUT-OFF	Cut-off (setup 63)	REQUIRED OUTPUT
interpolation	$450 \mathrm{~L} / \mathrm{min}$	$25 \mathrm{~L} / \mathrm{min}$	25/450 x 100\%=5.5\%	$16 \mathrm{~mA} \times 5.5 \%+4 \mathrm{~mA}=4.88 \mathrm{~mA}$
square root	$450 \mathrm{~L} / \mathrm{min}$	$25 \mathrm{~L} / \mathrm{min}$	$(25 / 450)^{2} \times 100 \%=0.3 \%$	$16 \mathrm{~mA} \times 0.3 \%+4 \mathrm{~mA}=4.05 \mathrm{~mA}$
TUNE MIN 64		With this s signal from flowrate ze This functio - Warning: before influen After press - CALIB actual display the an signal - DEFA - CAL S	ng it is possible to calib e flowmeter might not b will measure the real o be very sure that th calibration is execute on the accuracy of the PROG, three settings TE: with this setting, th 4 mA " value. After pres as soon as the calibra value must be more be processed. : with this setting, the : to select the last calib	he input value for (0)4mA as the act 4.0 mA (or 0.0 mA) at value at flow zero. ered signal is correct this function has major em! e selected: ut will be calibrated with the enter, CAL SET will be completed. From that moment, calibrated value before the factures value is re-installed. value.
$\begin{aligned} & \text { TUNE MAX } \\ & 65 \end{aligned}$	20MA	With this s signal from flowrate. This function - Warni before influen After press - CALIB actual as soo analog measu - DEFA - CAL	ing it is possible to calib e flowmeter might not will measure the real o be very sure that th calibration is execute on the accuracy of the PROG, three settings TE: with this setting, th $m A "$ value. After press s the calibration is com lue must be less than ment. T : with this setting, the to select the last calib	he input value for 20 mA as the 20.0 mA at maximum value at maximum flowrate. ered signal is correct this function has major ! e selected: t will be calibrated with the ter, CAL SET will be displayed d. From that moment, the librated value for a reliable factures value is re-installed. value.

7 - ANALOG OUTPUT

A linear 4-20mA signal (type AB: 0-20mA or type AU: 0-10V) output signal is generated according to the flowrate with a 10 bits resolution. The settings for flowrate (SETUP - 2) directly influence the analog output.
Note: When the analog output is not used, please make sure that setting 71 is disabled, or else the battery life time will be reduced significantly!
When a power supply is available but the output is disabled, a 3.5 mA signal will be generated.
The relationship between rate and analog output is set with the following functions:

$\begin{aligned} & \text { DISABLE / ENABLE } \\ & 71 \end{aligned}$		The D/A converter has a relatively high power consumption. If the analog output is not being used, select "disable" to switch-off the converter. For more information read par. 4.4.3.		
MINIMUM FLOWRATE 72		Enter here the flowrate at which the output should generate a 4mA signal (or OmA / OV) - in most applications at flowrate "zero". The number of decimals displayed depend upon SETUP 23. The time and measuring units ($\mathrm{L} / \mathrm{min}$ for example) are dependant upon SETUP 21 and 22 but are not displayed.		
MAXIMUM 73		Enter here the flon 10V) - in most The number of The time and m SETUP 21 and	ate which the output should ations at maximum flow. als displayed depend up ing units (L/min for exam t can not be displayed.	enerate a 20 mA (or TUP 23. re dependant upon
$\begin{aligned} & \text { CUT-OFF } \\ & 74 \end{aligned}$		To ignore leaka a percentage of less than the re Examples:	the flow for example, a low ull range of 16 mA (or 20 m rate, the current will be	ow cut-off can be set as 10 V). When the flow is
4MA (SETUP 72)	$\begin{gathered} \text { 20MA } \\ \text { (SETUP 73) } \end{gathered}$	CUT-OFF (SETUP 74)	REQUIRED RATE	Output
$0 \mathrm{~L} / \mathrm{min}$	$100 \mathrm{~L} / \mathrm{min}$	2\%	$(100-0) * 2 \%=2.0 \mathrm{~L} / \mathrm{min}$	$4+(16 * 2 \%)=4.32 \mathrm{~mA}$
$20 \mathrm{~L} / \mathrm{min}$	$800 \mathrm{~L} / \mathrm{min}$	3.5\%	$(800-20) * 3.5 \%=27.3 \mathrm{~L} / \mathrm{min}$	$4+(16 * 3.5 \%)=4.56 \mathrm{~mA}$

TUNE MIN / 4MA 75	The initial minimum analog output value is 4 mA (or $0 \mathrm{~mA} / 0 \mathrm{~V}$). However, this value might differ slightly due to external influences such as temperature for example. The 4 mA value (or $0 \mathrm{~mA} / 0 \mathrm{~V}$) can be tuned precisely with this setting. - Before tuning the signal, be sure that the analog signal is not being used for any application! After pressing PROG, the current will be about 4 mA (or $0 \mathrm{~mA} / 0 \mathrm{~V}$). The current can be increased/decreased with the arrow-keys and is directly active. Press ENTER to store the new value.
TUNE MAX / 20MA 76	The initial maximum analog output value is 20 mA (or 10V). However, this value might differ slightly due to external influences such as temperature for example. The 20 mA value (or 10 V) can be tuned precisely with this setting. - Before tuning the signal, be sure that the analog signal is not being used for any application! After pressing PROG, the current will be about 20 mA . The current can be increased/decreased with the arrow-keys and is directly active. Press ENTER to store the new value.

7 - ANALOG OUTPUT (CONTINUED)

FILTER $\mathbf{7 7}$	This function is used to stabilize the analog output signal. The output value is updated every 0.1 second. With the help of this digital filter a more stable but less precise reading can be obtained. The filter principal is based on three input values: the filter level (01-99), the last analog output value and the last average value. The higher the filter level, the longer the response time on a value change will be. Below, several filter levels with their response times are indicated:					
FILTER VALUE	ReSPONSE TIME ON STEP CHANGE OF ANALOG VALUE.					
TIME IN SECONDS						

8 - RELAY OUTPUT

Two one open-collector outputs (Optional: mechanic relays or active outputs) are available to control relays or small valves (max. 50VDC - 300mA).
Relay 2 can also be used as pulse output according the batch total (actual) or accumulated total.

1-STEP / 2-STEP	With this setting, the function of relay is $\mathbf{8 1}$
Select "2-step" to executed batches with a two-stage valve. Select "1-step" to be able to use relay 2 as pulse output relay.	

PRECLOSE QUANTITY
 82

According to the setting 81 -2-step, relay two will be used to control a valve for the batch process.
If the product is batched in two steps, the switch-off-moment for relay 2 has to be set. The switch moment is based on the remaining quantity before the end of batch.
If the preclose quantity is set to zero, it will switch simultaneously with relay 1.

PERIOD TIME PULSE OUTPUT

According to the setting 81-1-step, relay 2 can be used as a scaled pulse output.
The period time determines the time that the transistor or relay will be switched; in other words the pulse length. The minimum time between the pulses is as long as the period time.
One period is approx. 7.8 msec . If the value selected is "zero", the pulse output is disabled. The maximum value is 255 periods.
Note: If the frequency should go out of range - when the flowrate increases for example - an internal buffer will be used to "store the missed pulses": As soon as the flowrate reduces again, the buffer will be "emptied".
It might be that pulses will be missed due to a buffer-overflow, so it is advised to program this setting within it's range

NUMBER OF PERIODS	PERIOD TIME	MAX. FREQUENCY
0	disabled	disabled
1	0,0078 seconds	64 Hz.
2	0,0156 seconds	32 Hz.
3	0,0234 seconds	21 Hz.
64	0,5000 seconds	1 Hz.
255	1,9922 seconds	0.25 Hz.

PULSE PER

84

PULSE ACCORDING ACC. TOTAL / BATCH 85

According to the measurement unit settings for preset, a scaled pulse will be generated every X-quantity. Enter this quantity here while taking the displayed decimal position and measuring unit into account.
With this function, it is determined if a pulse will be generated according the quantity batched or according accumulated total. With setting "batch" the pulse generator will be set to zero when a new batch is started up.

9 - COMMUNICATION (OPTIONAL)

The functions described below deal with hardware that is not part of the standard delivery. Programming of these functions does not have any effect if this hardware has not been installed. Consult Appendix C and the Modbus communication protocol description for a detailed explanation.	
BAUDRATE $\mathbf{9 1}$	For external control, the following communication speeds can be selected: $1200-2400-4800-9600$ baud
BUS ADDRESS $\mathbf{9 2}$	For communication purposes, a unique identity can be attributed to every F131-A. This address can vary from 1-255.
MODE $\mathbf{9 3}$	The communication protocol is Modbus ASCII or RTU mode. Select OFF, to disable this communication function.

TYPE OF MODEL A1	For support and maintenance it is important to have information about the characteristics of the F131-A. Your supplier will ask for this information in the case of a serious breakdown or to assess the suitability of your model for upgrade considerations.
VERSION SOFTWARE A2	For support and maintenance it is important to have information about the characteristics of the F131-A. Your supplier will ask for this information in the case of a serious breakdown or to assess the suitability of your model for upgrade considerations.
SERIAL NUMBER A3	For support and maintenance it is important to have information about the characteristics of the F131-A. Your supplier will ask for this information in the case of a serious breakdown or to assess the suitability of your model for upgrade considerations.
PASS CODE A4	All SETUP-values can be pass code protected. This protection is disabled with value 0000 (zero). Up to and including 4 digits can be programmed, for example 1234.
TAGNUMBER A5	For identification of the unit and communication purposes, a unique tag number of maximum 7 digits can be entered.

4. INSTALLATION

4.1. GENERAL DIRECTIONS

- Mounting, electrical installation, start-up and maintenance of this instrument may only be carried out by trained personnel authorized by the operator of the facility. Personnel must read and understand this Operating Manual before carrying out its instructions.
- The F131-A may only be operated by personnel who are authorized and trained by the operator of the facility. All instructions in this manual are to be observed.
- Ensure that the measuring system is correctly wired up according to the wiring diagrams.

Protection against accidental contact is no longer assured when the housing cover is removed or the panel cabinet has been opened (danger from electrical shock). The housing may only be opened by trained personnel.

- Take careful notice of the " Safety rules, instructions and precautionary measures " at the front of this manual.

4.2. INSTALLATION / SURROUNDING CONDITIONS

Take the relevant IP classification of the casing into account (see manufactures plate). Even an IP67 (NEMA 4X) casing should NEVER be exposed to strongly varying (weather) conditions. When panel-mounted, the unit is IP65 (NEMA 4X)!
When used in very cold surroundings or varying climatic conditions, take the necessary precautions against moisture by placing a dry sachet of silica gel, for example, inside the instrument case.

Mount the F131-A on a solid structure to avoid vibrations.
4.3. DIMENSIONS- ENCLOSURE

Aluminum enclosures:

HA

HP

HM

HN

HU

HV
HO

Fig. 7: Dimensions aluminum enclosures.

GRP enclosures:

HK back box:
 (flat bottom)

HG

HJ
HE

Fig. 8: Dimensions GRP enclosures.

4.4. INSTALLING THE HARDWARE

4.4.1. INTRODUCTION

Electro static discharge does inflict irreparable damage to electronics! Before installing or opening the unit, the installer has to discharge himself by touching a well-grounded object.

- This unit must be installed in accordance with the EMC guidelines (Electro Magnetic Compatibility).

Aluminum enclosures

- When installed in an aluminum enclosure and a potentially explosive atmosphere requiring apparatus of equipment protection level Ga and Da , the unit must be installed such that, even in the event of rare incidents, an ignition source due to impact or friction sparks between the enclosure and iron/steel is excluded.
- Do ground the aluminum enclosure properly as indicated, if the F131-A has been supplied with the 115-230V AC power-supply type PM. The green / yellow wire between the back-casing and removable terminal-block may never be removed.

Fig. 9: Grounding aluminum enclosure with type PM 115-230V AC.

FOR INSTALLATION, PAY EMPHATIC ATTENTION TO:

- Separate cable glands with effective IP67 (NEMA4X) seals for all wires.
- Unused cable entries: ensure that you fit IP67 (NEMA4X) plugs to maintain rating.
- A reliable ground connection for both the sensor, and if applicable, for the metal casing.
- An effective screened cable for the input signal, and grounding of its screen to terminal 9 (GND) or at the sensor itself, whichever is appropriate to the application.

4.4.2. VOLTAGE SELECTION SENSOR SUPPLY

For Intrinsically Safe applications: read chapter 5.

Type PB / PC / PX (AP) - battery powered and output loop-powered applications:

Terminal 11 provides a limited supply voltage of 3.2 V DC (coil signals 1.2 V) for the signal output of the flowmeter.
Note: This voltage MAY NOT be used to power the flowmeters electronics, converters etc, as it will not provide adequate sustained power ! All energy used by the flowmeters pick-up will directly influence the battery life-time. It is strongly advised to use a "zero power" pickup such as a coil or reed-switch when operating without external power. It is possible to use some low power NPN or PNP output signals, but the battery life time will be significantly reduced (consult your distributor).

Type PD / PF / PM: Sensor supply: 1.2-3.2V-8.2V-12V or 24 V DC:
With this option, a real power supply for the sensor is available. The flowmeter can be powered with 8.2-12 or 24 V DC.

Total power consumption PD: max. 50mA@24V and PF / PM: max. 400mA@24V. The voltage is selected with the three switches inside the enclosure.

PD

PF / PM

Fig. 10: switch position voltage selection (type PD / PF / PM).

Switch positions

SENSOR A	
SWITCH 1	VOLTAGE
internal	3.2 V DC
external	switch 3+4

SENSOR B	
SWITCH 2	VOLTAGE

VOLTAGE SELECTION		
SWITCH 3	SWITCH 4	VOLTAGE
on	on	8.2 V DC
on	off	12 V DC
off	off	23 V DC

Function switch 1: voltage selection sensor A - terminal 11.
Function switch 2: not available.
Function switch 3+4: the combination of these switches determine the voltage as indicated. Do move switch 1 and / or switch 2 to the OFF position to enable the selected voltage with switch $3+4$.

4.4.3. TERMINAL CONNECTORS

For Intrinsically Safe applications: read chapter 5.

The following terminal connectors are available:

Fig. 11: Overview of terminal connectors standard configuration F131-A and options.

REMARKS: TERMINAL CONNECTORS:

Power Supply: Terminal GND-01-02 only available with type PD / PF or PM:

TYPE	SENSOR SUPPLY	Terminal									
		GND	01	02							
PD 8-24V AC	8,2-12-24V max. 50mA		AC	AC	\diamond	\diamond			\diamond	\diamond	
PD 8-30V DC	8,2-12-24V max. 50mA	L-	L+		\diamond	\diamond	\diamond	\diamond			
PF 24V AC $\pm 15 \%$	8,2-12-24V max. 400mA		AC	AC	\diamond	\diamond	\diamond		\diamond		
PF 24V DC $\pm 15 \%$	8,2-12-24V max. 400 mA	L-	L+		\bigcirc	\diamond	\diamond		\diamond		
PM 115-230V AC $\pm 15 \%$	8,2-12-24V max. 400 mA	EARTH	AC	AC	\diamond	\diamond	\diamond	\diamond	\diamond		
Note PD	do not use a AC autotransformer (Spartrafo) without a galvanic isolation.										
Note PF / PM	The total consumption of the sensors and outputs may not exceed 400mA@24V										
\diamond =option											

For Intrinsically Safe applications: read chapter 5.

Terminal 03-04; transistor or relay output R2:

This output is available to drive a low-power device (e.g. relays) to control the batch process.
Relay 1 is switched-on during the whole process while relay 2 can be used for two-step control or as pulse output.
In case of a pulse output function: the maximum pulse frequency of this output is 60 Hz .
Terminal 05-06; transistor or relay output R1:
This output is available to drive a low-power device (e.g. relays) to control the batch process.
Relay 1 is switched-on during the whole batch process.
Type OA:
An active 24 V DC signal according to the functions R1 and R2 is available with this option. Max. driving capacity $50 \mathrm{~mA} @ 24 \mathrm{~V}$ DC per output. (Requires power supply type PD / PF / PM).

Type OR: :
A mechanical relay output according the functions R1 and R2 is available with this option. Max. switch power 240V-0,5A per output. (Requires power supply type PF / PM).

Mechanic relay output-R1 and R2 INTERNAL EXTERNAL

Type OT:
A passive transistor output is available with this option. Max. driving capacity 300mA@50V DC.

Terminal 07-08; basic POWER SUPPLY - type PX - output loop powered:

Connect an external power supply of $8-24$ volts AC or $8-30 V D C$ to these terminals or a $4-20 \mathrm{~mA}$ loop. For a DC supply: connect the "-" to terminal 7 and the " + " to terminal 8 . When power is applied to these terminals, the (optional) internal battery will be disabled / enabled automatically to extend the battery life time. (Only valid for standard passive output).

Terminal 07-08 analog output (SETUP 7) :

An analog output signal proportional to the flowrate is available as standard.
Type AA:
An active $4-20 \mathrm{~mA}$ signal proportional to the flowrate is available with this option.
When the output is disabled, a 3.5 mA signal will be generated on these terminals.
Max. driving capacity 1000 Ohm @ 24VDC. (Requires power supply type PD / PF / PM).

Type AB:
An active $0-20 \mathrm{~mA}$ signal proportional to the flowrate is available with this option. Max. driving capacity 1000 Ohm @ 24VDC. (Requires power supply type PD / PF / PM).

Type AF:
For the Intrinsically Safe floating 4-20mA signal: please read Chapter 5.

Type AI:

An isolated $4-20 \mathrm{~mA}$ signal proportional to the flowrate is available with this option. When the output is disabled, a 3.5 mA signal will be generated on these terminals.
Max. driving capacity 1000 Ohm @ 30VDC.
This option can be battery powered but the life time of the battery is about 2-3 years.

Type AP:

A passive $4-20 \mathrm{~mA}$ signal proportional to the flowrate is available with this option. When a power supply is connected but the output is disabled, a 3.5 mA signal will be generated.
Max. driving capacity 1000 Ohm. This output does loop power the unit as well (type PX).

Type AU:

A 0-10VDC signal proportional to the flowrate is available with this option.
Max. load 10mA @ 10VDC. (Requires power supply type PD / PF / PM).
Active 0-10V analog output
internal external

Terminal 09-11: Type A - Flowmeter input (general)
The F131-A requires a (0)4-20mA flowmeter signal which will be processed 4 times a second with a 14 bits accuracy. The input is not isolated.
For Intrinsically safe applications (without input loop power): please read chapter 5.

Terminal 09-10: Type A-PL - Flowmeter input / power supply:

The F131-A-PL requires a $4-20 \mathrm{~mA}$ flowmeter signal which has a double function:
The signal will be processed 4 times a second with a 14 bits accuracy and the unit will be powered from the sensor signal (input loop powered). The input is not isolated and not intrinsically safe.

Terminal 12-13; external START:
With this function, the batch controller can be started with an external switch. The input must be switched with a potential free contact to the GND-terminal number 12 for at least 0.3 seconds.

Terminal 15-16; external STOP:

With this function, the batch controller can be interrupted or cancelled with an external switch. The input must be switched once for interruption or switch twice for cancellation with a potential free contact to the GND-terminal number 15 for at least 0.3 seconds.

Terminal 26-31: type CB / CH / CI / CT - communication RS232 / RS485 / TTL: see the manufacturer's plate.

- Full serial communications and computer control in accordance with RS232 (length of cable max. 15 meters) or RS485 (length of cable max. 1200 meters) is possible.
- Read the Modbus communication protocol and Appendix C.

Fig. 12: Overview terminal connectors communication option.
When using the RS232 communication option, terminal 27 is used for supplying the interface. Please connect the DTR (or the RTS) signal of the interface to this terminal and set it active (+12 V). If no active signal is available it is possible to connect a separate supply between terminals 26 and 27 with a voltage between 8 V and 24 V .

Terminal 26-31: backlight option - type ZB:
Note: if the unit is supplied with a power supply type PD, PF or PM, the backlight supply is integrated, so the text following is not applicable.

To power the backlight, provide a $12-24 \mathrm{~V}$ DC to terminal $26(-)$ and 27 (+). An external trimmer 1 kOhm trimmer can be used to tune the brightness of the backlight, or if not desired, a short-cut between these terminals have to be made which will result in the maximum brightness.
Note: Intrinsically Safe as well as 4-wire RS485 communication is not possible in combination with option ZB.

Option type ZB: adjustable backlight

Fig. 13: Overview terminal connectors backlight option.

5. INTRINSICALLY SAFE APPLICATIONS

5.1. GENERAL INFORMATION AND INSTRUCTIONS

Cautions

- Mounting, electrical installation, start-up and maintenance of this device may only be carried out by trained personnel authorized by the operator of the facility. Personnel must read and understand this Operating Manual before carrying out its instructions.
- This device may only be operated by personnel who are authorized and trained by the operator of the facility. All instructions in this manual are to be observed.
- Ensure that the measuring system is correctly wired up according to the wiring diagrams. Protection against accidental contact is no longer assured when the housing cover is removed or the cabinet has been opened (danger of electric shock). The housing may only be opened by trained personnel.
- To maintain the degree of protection of at least IP65 in accordance with IEC 60529, certified cable entries in accordance with IEC 61241-0 must be used and correctly installed. Unused openings must be closed with suitable blanking elements.
- When the enclosure of the Indicator is made of aluminum alloy, when used in a potentially explosive atmosphere requiring apparatus of equipment protection level Ga and Da , the unit must be installed such that, even in the event of rare incidents, an ignition source due to impact or friction sparks between the enclosure and iron/steel is excluded.
- Take careful notice of the " Safety rules, instructions and precautionary measures " in the front of this manual.

Safety Instructions

- When two or more active intrinsically safe circuits are connected to the indicator, in order to prevent voltage and/or current addition, applicable to the external circuits, precautions must be taken to separate the intrinsically safe circuits in accordance with IEC 60079-11.
- For the combined connection of the different supply, input and output circuits, the instructions in this manual must be observed.
- From the safety point of view the circuits shall be considered to be connected to earth.
- For installation under ATEX directive: this intrinsically safe device must be installed in accordance with the Atex directive 94/9/EC and the product certificate KEMA 03ATEX1074 X.
- For installation under IECEx scheme: this intrinsically safe device must be installed in accordance the product certificate IECEx DEK 11.0042X.
- Exchange of Intrinsically Safe battery FWLiBAT-0xx with certificate number KEMA 03ATEX1071 U or IECEx KEM 08.0005U is allowed in Hazardous Area. See paragraph 5.4. for detailed battery replacement instructions.

Please Note

- Certificates, safety values and declaration of compliance can be found in the document named: "Fluidwell F1..-..-XI - Documentation for Intrinsic Safety".
- Special conditions for safe use mentioned in both the certificate and the installation instructions must be observed for the connection of power to both input and / or output circuits.
- When installing this device in hazardous areas, the wiring and installation must comply with the appropriate installation standards for your industry.
- Study the following pages with wiring diagrams per classification.

Label information (inside and outside the enclosure)

Indicated labels on the back cover (below) and on the inside cover (right) show the type labels for intrinsically safe certified units.
For details on usage see the separate "Fluidwell F1.....-XI
Documentation for Intrinsic Safety",

Fluidwell bv - Voltaweg 23, Veghel, The Netherlands - www.fluidwell.com

Serial number and year of production

This information can be looked-up on the display:
See setup function (par. 3.2.2.) for details.

5.2. TERMINAL CONNECTORS INTRINSICALLY SAFE APPLICATIONS

The unit is classified as group IIB/IIIC by default.
Note! Classification of the unit as group IIC is only possible under the following conditions:

- The indicator is either supplied by
- the internal supply (option -PC); or
- the external supply connected to terminals 0 and 1 (option -PD); or
- the circuit supply connected to terminals 7 and 8 (option -AP);

The maximum values for any of those circuits are those as defined for group IIB/IIIC;

- No other active external intrinsically safe circuits may be connected to the indicator, with exception of circuits connected to terminals 3 and 4 and/or terminals 5 and 6 ; the maximum values for any of those circuits are those as defined for group IIB/IIIC

Explanation Intrinsically Safe options:

Terminal connectors F131-A-XI:

Fig. 14: Overview terminal connectors XI - Intrinsically Safe applications.

Explanation Intrinsically Safe options:

Type AF - Intrinsically Safe floating 4-20mA analog output:
A floating $4-20 \mathrm{~mA}$ signal proportional to the flowrate is available with this option.
When the output is disabled, a 3.5 mA signal will be generated.
Max. driving capacity 1000 Ohm @ 30VDC.
Note! It is required to link the minus from the analog output - terminal 7 - with a ground terminal of the unit, e.g. terminal 5 or 9. Please check the drawings following.

Type PD-XI - Intrinsically Safe power supply and sensor supply - Terminal GND- 01 and 11.

TYPE	SENSOR SUPPLY (TERMINAL 11 AND 14)	GND			01

Terminal 02 and 11: these terminals offer the same voltage as connected to terminal 01.
5.3 CONFIGURATION EXAMPLES

Configuration example IIB/IIIC - F131-A-AF-CT-OT-(PB)-(PD)-XI

Fig. 15: Configuration example 1 Intrinsically Safe

Configuration example IIB/IIIC - F131-A-AF-CT-OT-PD-XI

Fig. 16: Configuration example 2 Intrinsically Safe

Configuration example IIB/IIIC and IIC - F131-A-AF-(CT)-OT-PD-XI

Fig. 17: Configuration example 3 Intrinsically Safe

5.4 BATTERY REPLACEMENT INSTRUCTIONS

Safety Instructions

- Fire, explosion or severe burns may result if mistreated. Do not recharge, crush, disassemble, incinerate, heat above $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$ or expose contents to water.
- Mounting, electrical installation, start-up and maintenance of this device may only be carried out by trained personnel authorized by the plant operator. Personnel must read and understand this instruction before carrying out the replacement procedure.
- Always follow the instructions listed in the supplied Battery Replacement Instruction Sheet.
- Batteries pose an environmental hazard. Return used batteries to a recycling point.

Safety instructions for hazardous areas

- Verify the correct battery is supplied: Only batteries with indicated Ex label are certified for Caution! replacement and use in hazardous areas. Batteries for use in safe areas have no Ex label. DO NOT EXCHANGE: Using the wrong type of battery can pose a SERIOUS RISK.
- For use in hazardous areas Fluidwell recommends FW-LiBAT batteries (manufactured by Fluidwell bv) only.

Battery replacement procedure

Depending on the production batch, one of two visualized Intrinsically Safe certified battery types may have been installed in the unit. They are interchangeable.

1. To replace the battery, open the unit to gain access to the back inside cover of the unit.
2. Unplug the field connectors from the back inside of the unit.
3. Remove the screw that holds the plastic inside cover.
4. Open the cover and unplug the battery connector.
5. Remove the battery from the inside of the plastic cover. Do not remove the battery clip!
6. Install the new battery and re-assemble the unit in reverse order.
7. Start-up the unit
8. MAINTENANCE

6.1. GENERAL DIRECTIONS

- Mounting, electrical installation, start-up and maintenance of the instrument may only be carried out by trained personnel authorized by the operator of the facility. Personnel must read and understand this Operating Manual before carrying out its instructions.
- The F131-A may only be operated by personnel who are authorized and trained by the operator of the facility. All instructions in this manual are to be observed.
Ensure that the measuring system is correctly wired up according to the wiring
Caution! diagrams. Protection against accidental contact is no longer assured when the housing cover is removed or the panel cabinet has been opened (danger from electrical shock). The housing may only be opened by trained personnel.
- Take careful notice of the " Safety rules, instructions and precautionary measures " in the front of this manual.

The F131-A does not require special maintenance unless it is used in low-temperature applications or surroundings with high humidity (above 90% annual mean). It is the users responsibility to take all precautions to dehumidify the internal atmosphere of the F131-A in such a way that no condensation will occur, for example by placing dry silica-gel sachet in the casing just before closing it.
Furthermore, it is required to replace or dry the silica gel periodically as advised by the silica gel supplier.

Battery life-time:

It is influenced by several issues :

- Flowrate calculation: the lower number of pulses (SETUP 26) the shorter the battery life-time.
- Analog output signal; be sure that an external power supply is connected or that the function is disabled if not in use; or else it will have a major influence on the battery life-time (SETUP 71).
- Display update: fast display update uses significantly more power; SETUP 51.
- Pulse output and communications .
- Low temperatures; the available power will be less due to battery chemistry.

Note: It is strongly advised to disable unused functions.
Note!

Check periodically:

- The condition of the casing, cable glands and front panel.
- The input/output wiring for reliability and aging symptoms.
- The process accuracy. As a result of wear and tear, re-calibration of the flowmeter might be necessary. Do not forget to re-enter any subsequent Span alterations.
- The indication for low-battery.
- Clean the casing with soapy-water. Do not use any aggressive solvents as these might damage the polyester coating.

APPENDIX A: TECHNICAL SPECIFICATION

GENERAL

Display	
Type	High intensity reflective numeric and alphanumeric LCD, UV-resistant.
Digits	Seven 17mm (0.67") and eleven 8mm (0.31"). Various symbols and measuring units.
Refresh rate	User definable: 8 times/sec -30 secs.
Type ZB	Transflective LCD with green LED backlight. Good readings in full sunlight and darkness. Note: only available for safe area applications. Power requirements: $12-24 V ~ D C ~+~ 10 \% ~ o r ~ t y p e ~ P D, ~ P F, ~ P M . ~ P o w e r ~ c o n s u m p t i o n ~ m a x . ~$ 1 Watt.

Enclosures	
General Control Keys Painting	Die-cast aluminum or GRP (Glassfibre Reinforced Polyamide) enclosure with Polycarbonate window, silicone and EPDM gaskets. UV stabilized and flame retardant material. Three industrial micro-switch keys. UV-stabilized silicone keypad. Aluminum enclosure only: UV-resistant 2-component industrial painting.
Panel-mount enclosures Classification Panel cut-out Type HC Type HB	$\begin{array}{\|l} \hline \text { Dimensions: } 130 \times 120 \times 60 \mathrm{~mm}\left(5.10 " \times 4.72^{\prime \prime} \times 2.38 "\right) \text { - LxHxD. } \\ \text { IP65 / NEMA4X } \\ 115 \times 98 \mathrm{~mm}\left(4.53 " \times 3.86^{\prime \prime}\right) \text { LxH. } \\ \text { GRP panel-mount enclosure } \\ \text { Aluminum panel-mount enclosure } \\ \hline \end{array}$
Field/wall-mount enclosures Classification	Dimensions: $130 \times 120 \times 75 \mathrm{~mm}$ ($5.10^{\prime \prime} \times 4.72^{\prime \prime} \times 2.95^{\prime \prime}$) - LxHxD. IP67 / NEMA4X
Aluminium enclosures	
Type HA	Drilling: 2x PG9 - 1x M20.
Type HM	Drilling: 2 x M16-1x M20.
Type HN	Drilling: $1 \times \mathrm{M} 20$.
Type HO	Drilling: $2 \times \mathrm{M} 20$.
Type HP	Drilling: 6x M12.
Type HT	Drilling: $1 \times 1 / 22^{\prime \prime N} \mathrm{NPT}$.
Type HU	Drilling: $3 x^{1} / 2^{\prime \prime} \mathrm{NPT}$.
Type HV	Drilling: 4x M20
Type HZ	No drilling.
GRP enclosures	
Type HD	No drilling.
Type HE	Drilling: $2 \times 16 \mathrm{~mm}\left(0.63{ }^{\prime \prime}\right)-1 \times 20 \mathrm{~mm}$ (0.78").
Type HF	Drilling: $1 \times 22 \mathrm{~mm}$ (0.87").
Type HG	Drilling: $2 \times 20 \mathrm{~mm}$ (0.78").
Type HJ	Drilling: $3 \times 22 \mathrm{~mm}$ (0.87").
Type HH	Drilling: 6x 12mm (0.47").
Type HK	Flat bottom - no drilling.
ABS enclosure	
Type HS	Silicone free ABS enclosure with EPDM and PE gaskets. UV-resistant polyester keypad. (no drilling)

| Operating temperature | |
| :--- | :--- |$|-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+176^{\circ} \mathrm{F}\right) \mathrm{O}$

Power supply	
Type PB	Lithium battery - life-time depends upon settings - up to 5 years.
Type PC	Intrinsically Safe lithium battery - life-time depends upon settings - up to 5 years.
Type PD	8 -24V AC / DC $\pm 10 \%$. Power consumption max. 10 Watt. Intrinsically safe: $16-30 \mathrm{~V}$ DC; power consumption max. 0.75 Watt.
Type PF	24 V AC / DC $\pm 10 \%$. Power consumption max. 15 Watt.
Type PL	Input loop powered from sensor signal 4-20mA (type A, non IS).
Type PM	$115-230 \mathrm{~V} \mathrm{AC}+10 \%$. Power consumption max. 15 Watt.
Type PX	Output loop powered: 8-30V DC. Power consumption max. 0.5 Watt.
Note PF / PM	The total consumption of the sensors`, backlight and outputs may not exceed 400mA@24V.
Note I.S. applications	For intrinsically safe applications, consult the safety values in the certificate.

Sensor excitation	
Type PB / PC / PX	3.2V DC for pulse signals and 1.2V DC for coil pick-up. Note: This is not a real sensor supply. Only suitable for pulse sensors with a very low power consumption like coils (sine wave) and reed-switches.
Type PD	1.2-3.2-8.2-12 and 24V DC - max. 50mA@24V DC
Type PD-XI	Intrinsically safe: Pulse signals: 1.2-3.2-8.2-max. 7mA@8.2V DC. Analog signals: the sensor supply voltage is according to the power supply voltage connected to terminal 1. Also terminal 2 offers the same voltage.
Type PF / PM	1.2-3.2-8.2-12 and 24V DC - max. 400mA@24V DC.

Terminal connections

Type:	Removable plug-in terminal strip. Wire max. 1.5 mm 2 and 2.5 mm 2

Data protection	TypeEEPROM backup of all setting. Backup of running totals every minute. Data retention at least 10 years.
Pass code	Configuration settings can be pass code protected.

Hazardous area (option)	
Intrinsically safe	ATEX approval:
Type XI	<عx II 1 G Ex ia IIB/IIC T4 Ga II 1 D Ex ia IIIC $\mathrm{T} 100^{\circ} \mathrm{C}$ Da IP6x
	IECEx approval:
	Ex ia IIB/IIC T4 Ga
	Ex ia IIIC $7100^{\circ} \mathrm{C}$ Da IP6x
Explosion proof Type XD/XF	ATEX approval ref.: <EX> II 2 GD EEx d IIB T5. Weight appr. 15kg. Dimensions of enclosure: $350 \times 250 \times 200 \mathrm{~mm}\left(13.7^{\prime \prime} \times 9.9^{\prime \prime} \times 7.9^{\prime \prime}\right)$ LxHxD.

Environment	
Electromagnetic compatibility	EN 61326 (1997), EN 61010-1 (1993).

INPUTS

Flowmeter	
Type P	Coil/sine wave (minimum 20 mV pp or 80 mV pp - sensitivity selectable), NPN/PNP, open collector, reed-switch, Namur, active pulse signals $8-12$ and 24 V .
Frequency	Minimum 0 Hz - maximum 7 kHz for total and flowrate. Maximum frequency depends on signal type and internal low-pass filter. E.g. Reed switch with low-pass filter: max. frequency 120 Hz .
K-Factor	0.000010-9,999,999 with variable decimal position.
Low-pass filter	Available for all pulse signals.
Type A	(0)4-20mA - with signal calibration feature. Resolution: 14 bit.
Type U	0-10 V, 0-5 V, 1-5 V - with signal calibration feature. Resolution: 14 bit.
Accuracy	Resolution: 14 bit.. Error $<0.025 \mathrm{~mA} / \pm 0.125 \%$ FS. Low level cut-off programmable.
Span	0.000010-9,999,999 with variable decimal position.
Update time	Four times a second.
Voltage drop	2.5 Volt.
Load impedance	3kOhm
Relationship	Linear and square root calculation.
Note	For signal type A and U: external power to sensor is required; e.g. type PD.

OUTPUTS

Analog output	
Function	transmitting flowrate.
Resolution	10-bit.
Accuracy	error < 0.05\% - update 10 times a second. Software function to calibrate the $(0) 4.00 \mathrm{~mA}$ and $20.00 \mathrm{~mA} / 0$ and 10 V levels precisely.
Load	max. 1 kOhm
Type AA	Active 4-20mA output (requires type OA + PD, PF or PM).
Type AB	Active 0-20mA output (requires type OA + PD, PF or PM).
Type AF	Floating 4-20mA output for Intrinsically Safe applications (isolated output)
Type AI	Galvanically isolated output - also for battery powered models.
Type AP	Passive 4-20mA output - output loop powered (type PX)
Type AU	Active 0-10V output (requires type OA + PD, PF or PM).

Transistor outputs	
Function	User defined: batch process two stage control or scaled pulse output acc. batch or acc. total.
Pulse output	Max. frequency 60Hz. Pulse length user definable between 7,8msec up to 2 seconds.
Type OA	Two active 24 V DC transistor outputs; max. 50mA per output (requires type AA + PD, PF or PM).
Type OR	Two mechanic relay outputs; max. switch power 230V AC - 0,5A (requires type PD or PM).
Type OT	Two passive transistor outputs - not isolated. Load max. 50V DC - 300mA.

Communication option	
Functions	reading display information, reading / writing all settings.
Protocol	Modbus RTU
Speed	$1200-2400-4800-9600$ baud
Addressing	maximum 255 addresses.
Type CB	RS232
Type CH	RS485 2-wire
Type CI	RS485 4-wire
Type CT	TTL Intrinsically Safe communication.
Type CX	no communication.

OPERATIONAL

Operator functions	
Functions	- enter a preset value, - start / interrupt and stop the batch process, - total can be reset to zero.
Displayed information	- preset value and / or flowrate, - running batch total or remaining quantity, - total and accumulated total.

Preset / Total	
Digits	7 digits.
Units	L, m3, GAL, USGAL, KG, Ib, bbl, no unit.
Decimals	$0-1-2$ or 3.
Note	total can be reset to zero.

Accumulated total	
Digits	11 digits.
Units / decimals	according to selection for total.

Flowrate	7 digits.
Digits	$\mathrm{mL}-\mathrm{L}-\mathrm{m} 3-\mathrm{mg}-\mathrm{g}-\mathrm{kg}-\mathrm{ton}-\mathrm{GAL}-\mathrm{bbl}-\mathrm{lb}-\mathrm{cf}-\mathrm{REV}-\mathrm{no}$ unit $-\mathrm{scf}-\mathrm{Nm} 3-\mathrm{NL}-\mathrm{P}$
Units	$0-1-2$ or 3.
Decimals	$/$ sec $-/ \mathrm{min}-/ \mathrm{hr}-/$ day.
Time units	

APPENDIX B: PROBLEM SOLVING

In this appendix, several problems are included that can occur when the F131-A is going to be installed or while it is in operation.

Flowmeter does not work properly
Check:

- Settings for span SETUP - 13-14, 24-25
- Did you re-calibrate the $4-20 \mathrm{~mA}$ input in a proper way? You can remove the re-calibration with the default setting. SETUP 75-76
- Flowmeter, wiring and connection of terminal connectors (par. 4.4.4.),
- Power supply of flowmeter (par. 4.4.4.).

Overrun correction does not function properly

Check:

- SETUP 31 - disable/enable; is the function enabled?
- SETUP 32 - overrun time; is this time long enough to measure the real overrun quantity?

Analog output does not function properly:

Check:

- SETUP 71 - is the function enabled?
- SETUP 72 / 73: are the flow-levels programmed correctly?
- connection of the external power-supply according to the specification.

Pulse output does not function:

Check:

- SETUP 81 - pulse per " x " quantity; is the value programmed reasonable and will the maximum output be under 20 Hz ?
- SETUP 82 - impulse width; is the external device able to recognize the selected pulse width and frequency?

The pass code is unknown:

If the pass code is not 1234 , there is only one possibility left: call your supplier.

Abstract

ALARM When the alarm flag starts to blink an internal alarm condition has occurred. Press the "select button" several times to display the 5-digit error code. The codes are:

0001: irrecoverable display-data error: data on the display might be corrupted. 0002: irrecoverable data-storage error: the programming cycle might have gone wrong: check programmed values. 0003: error 1 and error 2 occurred simultaneously If the alarm occurs more often or stays active for a longer time, please contact your supplier.

APPENDIX C: COMMUNICATION VARIABLES

Remarks:

- Below, an overview of the F131-A specific variables; other common variables are described in the standard table.
- All numbers are decimal numbers, unless otherwise noted.
- The following variables of the standard table (var00-var30) are not valid for this product and will be responded with value 1 : var00, 03-05, 07,08, 16-22, 24, 26-29.

CONFIGURATION VARIABLES F131-A - SETUP-LEVEL:				
VAR	DESCRIPTION	BYTES	VALUE	REMARKS
PRESET / TOTAL				
$\begin{gathered} 32 \\ (20 \mathrm{~h}) \end{gathered}$	unit	1	$\begin{aligned} & \hline 0=\mathrm{L} \\ & 1=\mathrm{m} 3 \\ & 2=\mathrm{kg} \\ & 3=\mathrm{lb} \\ & 4=\text { gal } \\ & 5=\text { usgal } \\ & 6=\mathrm{bbl} \\ & 7=\text { none } \\ & \hline \end{aligned}$	
$\begin{gathered} 33 \\ (21 \mathrm{~h}) \end{gathered}$	decimals	1	0...3	
$\begin{gathered} 34 \\ (22 \mathrm{~h}) \\ \hline \end{gathered}$	span	3	1...9.999.999	S 0000001 up to $S 0000009$ is allowed when decs < 6! (VAR37)
$\begin{gathered} 37 \\ (25 \mathrm{~h}) \\ \hline \end{gathered}$	decimals Span	1	0... 6	
$\begin{aligned} & \hline 218 \\ & \text { DAh } \\ & \hline \end{aligned}$	batch maximum	3	0-9,999,999	decimals: see 33 (21h)

FLOWRATE

$\begin{gathered} \hline 48 \\ (30 h) \end{gathered}$	unit	1	$\begin{aligned} & 0=\mathrm{mL} \\ & 1=\mathrm{L} \\ & 2=\mathrm{m} 3 \\ & 3=\mathrm{mg} \\ & 4=\mathrm{g} \\ & 5=\mathrm{kg} \\ & 6=\text { ton } \\ & 7=\text { gal } \\ & 8=\mathrm{bbl} \\ & 9=\mathrm{lb} \\ & 10=\mathrm{cf} \\ & 11=\text { rev } \\ & \text { (revolutions) } \\ & 12=\text { none } \\ & 13=\mathrm{scf} \\ & 14=\mathrm{NM} 3 \\ & 15=\mathrm{NL} \\ & 16=\mathrm{p} \\ & \hline \end{aligned}$	
$\begin{gathered} 49 \\ (31 \mathrm{~h}) \end{gathered}$	time unit	1	$\begin{aligned} & 0=\text { sec } \\ & 1=\text { min } \\ & 2=\text { hour } \\ & 3=\text { day } \\ & \hline \end{aligned}$	
$\begin{gathered} 50 \\ (32 \mathrm{~h}) \end{gathered}$	decimals	1	0...3	
$\begin{gathered} 51 \\ (33 \mathrm{~h}) \\ \hline \end{gathered}$	span	3	1...9.999.999	S 0000001 up to $S 0000009$ is allowed when decs < 6! (VAR54)
$\begin{gathered} 54 \\ (36 \mathrm{~h}) \\ \hline \end{gathered}$	decimals span	1	0... 6	

VAR	DESCRIPTION	BYTES	VALUE	REMARKS
OVERRUN				
$\begin{aligned} & 192 \\ & (\mathrm{COh}) \end{aligned}$	overrun time	2	1...9,999	steps of 0.1 second
$\begin{aligned} & 194 \\ & \text { (C2h) } \end{aligned}$	disable/enable overrun	1	$\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$	
DISPLAY				
$\begin{aligned} & \hline 195 \\ & \text { (C3h) } \\ & \hline \end{aligned}$	increase / decrease	1	$\begin{array}{\|l} \hline 0=\text { decrease } \\ 1=\text { increase } \\ \hline \end{array}$	
POWERMANAGEMENT				
$\begin{aligned} & 80 \\ & (50 h) \end{aligned}$	LCD update time	1	$\begin{aligned} & 0=\text { fast } \\ & 1=1 \text { sec } \\ & 2=3 \mathrm{sec} \\ & 3=15 \mathrm{sec} \\ & 4=3 \mathrm{sec} \\ & 5=0 \mathrm{ff} \\ & \hline \end{aligned}$	
$\begin{aligned} & \hline 81 \\ & (51 \mathrm{~h}) \end{aligned}$	power-mode battery	1	$\begin{aligned} & \hline 0=\text { operational } \\ & 1=\text { shelf } \end{aligned}$	
FLOWMETER				
$\begin{aligned} & \hline 98 \\ & (62 \mathrm{~h}) \end{aligned}$	formula	1	$\begin{aligned} & 0=\text { linear } \\ & 1=\text { square root } \end{aligned}$	
$\begin{aligned} & \hline 99 \\ & (63 \mathrm{~h}) \\ & \hline \end{aligned}$	filter	1	0.... 99	
$\begin{aligned} & \hline 100 \\ & (64 \mathrm{~h}) \end{aligned}$	cut-off	2	0.... 999	steps of 0.1\%
$\begin{aligned} & \hline 102 \\ & (66 \mathrm{~h}) \end{aligned}$	$\begin{aligned} & \hline \text { calibration low } \\ & (4 \mathrm{~mA}) \end{aligned}$	1	0=default 1=calibrate $2=$ cal set	
$\begin{array}{\|c\|} \hline 103 \\ (67 \mathrm{~h}) \end{array}$	calibration high (20mA)	1	$0=$ default 1=calibrate 2=cal set	
ANALOG OUTPUT				
$\begin{aligned} & \hline 112 \\ & (70 \mathrm{~h}) \end{aligned}$	analog output	1	$\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$	
$\begin{aligned} & 113 \\ & (71 \mathrm{~h}) \end{aligned}$	minimum rate	3	0..9999999	unit, time, decimals acc. var48-50
$\begin{aligned} & 116 \\ & (74 \mathrm{~h}) \end{aligned}$	maximum rate	3	0..9999999	unit, time, decimals acc. var48-50
$\begin{aligned} & \hline 119 \\ & (77 \mathrm{~h}) \end{aligned}$	cut off percentage	1	$0 . .99$	steps of 0.1\%
$\begin{aligned} & 120 \\ & (78 \mathrm{~h}) \end{aligned}$	tune minimum rate	2	$0 . .9999$	
$\begin{aligned} & 122 \\ & (7 \mathrm{Ah}) \end{aligned}$	tune maximum rate	2	$0 . .9999$	
$\begin{aligned} & \hline 99 \\ & (63 \mathrm{~h}) \end{aligned}$	filter	1	0.... 99	
RELAYS				
$\begin{aligned} & \hline 196 \\ & \text { (C4h) } \end{aligned}$	1-step / 2-step	1	$\begin{aligned} & 0=1 \text {-step } \\ & 1=2 \text {-step } \end{aligned}$	
$\begin{aligned} & \hline 197 \\ & \text { (C5h) } \\ & \hline \end{aligned}$	preclose quantity	3	0-9,999,999	decimals: see 33 (21h)
$\begin{array}{\|l\|} \hline 128 \\ (80 h) \end{array}$	impulse width	1	$\begin{array}{\|l\|} \hline 0=\text { off } \\ 1=\text { short } \\ 2=\text { long } \end{array}$	
$\begin{array}{\|l} \hline 129 \\ (81 \mathrm{~h}) \end{array}$	pulse per X quantity	3	1..9999999	unit, decimals acc. var32-33

VAR	DESCRIPTION	BYTES	VALUE	REMARKS
OTHERS				
$\begin{array}{\|l} \hline 168 \\ \text { (A8h) } \end{array}$	pass code	2	xxxx	read only!
$\begin{aligned} & \hline 170 \\ & \text { AAh } \\ & \hline \end{aligned}$	tagnumber	3	$0 . .9999999$	Other vars: see standard table
BATCH MODE				
$\begin{array}{\|l} \hline 223 \\ \text { DFh } \end{array}$	batch mode	1	1 = Batch running $2=$ Batch pausing 4 = Batch finished $8=$ Batch in overruntime	read only
BATCH KEYLOCK				
$\begin{array}{\|l\|} \hline 154 \\ 9 \mathrm{Ah} \\ \hline \end{array}$	Batch keylock	2	Range: 0000h..FFFFh	steps of 0.1 second
BATCH KEYLOCK MASK				
$\begin{aligned} & 156 \\ & 9 \mathrm{Ch} \end{aligned}$	Batch Keylock mask keys set are not detected	1	$\begin{aligned} & \text { Key 1: } 0 \times 01 \\ & \text { Key 2: } 0 \times 02 \\ & \text { Key 3: } 0 x 04 \\ & \hline \end{aligned}$	bitfield
BATCH COMMAND				
$\begin{aligned} & 157 \\ & 9 \mathrm{Dh} \end{aligned}$	Batch Command Read out returns last executed command entered through communication	1	$\begin{aligned} & \text { Commands: } \\ & 1=\text { Start } \\ & 2=\text { Pause } \\ & 3=\text { Stop } \\ & 4=\text { Release } \end{aligned}$	Before a new batch can be initiated through communication, the release command must be send. This way, when combined with the Keylock, overwriting of batch information (total/preset) data can be prevented.
PRESET				
$\begin{aligned} & \hline 200 \\ & (\mathrm{CBh}) \\ & \hline \end{aligned}$	preset quantity	3	0-9,999,999	decimals: see 33 (21h)

OTHER F131-A VARIABLES FOR COMMUNICATION

ACTUAL - variable number 208 (DOh) - 6 bytes
Read actual: The value of actual read using communication might differ from the value that appears on the display. This is due to the fact that the display can only display up to seven digits (e.g. when two decimals are selected for "preset" and actual has a value of 123456,78 the display will show 23456,78 while communication will read an "actual" of 12345678 and a "actual decimals" of 2).

TOTAL - variable number 566 (236h) - 6 bytes
Read total: The value of total read using RS communications might differ from the value that appears on the display. This is due to the fact that the display can only display up to seven digits (for example when two decimals are selected for total and total has a value of 123456,78 the display will show 23456,78 while communication will read a "total" of 12345678 and a "total decimals" of 2).
Write total: total can only be cleared. This means writing a value different from 0 will result in the reply of an error message. Only writing 6 bytes of zero's to total will be accepted.

ACCUMULATED TOTAL - variable number 560 (230h) - 6 bytes
Read acc. total: A difference between the read value and the display value, as explained for "Read total", might appear here too.
Write acc. total Not possible.

When reading or writing total or accumulated total it should be noted that the used values are given including the decimals. This means that a read/write to one of these variables should be accompanied with a read/write to the variable that holds the number of decimals for this variable:

Example: read var. 566 for total:

Read var. 33 for total decimals and calculate the real value of total by multiplying total with $10^{- \text {(total decimals) }}$

FLOWRATE - variable number 572 (23Ch) - 4 bytes
Read flowrate: The value difference as mentioned with total/acc. total might appear here too.
Write flowrate: Not possible.

INDEX OF THIS MANUAL

accumulated Total	9
active output	29
actual settings	52
analog	
0-10V output	31
floating output.	37
flowrate min.	19
intrinsically safe output.	37
isolated output.	31
output loop powered.	30
batch maximum	8
battery life time	42
Clear Total	9
communication	34
family-specific variables	47
terminal connection	34
Configuration	10
Dimension enclosures	24
display	25
function	16
display update	16
flowmeter	17
Flowmeter input	32
flowrate	
decimals	15
measuring unit	15
Span	15
time unit	15
Installation	23
Intrinsic safety	35
Intrinsically Safe options	36
IP classification	23
keys	7
low-battery	9
Low-battery alarm	9

main-function 11
maintenance 42
model 22
Operator level 8
pass code 22, 46
power supply 28
power supply - loop powered 30
power supply intrinsically safe 37
presetdecimals span14, 15
max. batch size 14
span 14
Preset
batch maximum 8
enter batch value 8
Problem solving 46
pulse output pulse length / period time 21
pulse per quantity 21
Relay output 21, 29
serial number 22
SETUP-level 10
START 8
Start, external input 33
STOP 9
stop, external input 33
subfunction 11
tagnumber 22
Technical specification 43
terminal connectors 28
total
decimals 14
measuring unit 14
transistor output 29
version software 22

LIST OF CONFIGURATION SETTINGS
SETTING

SETTING	DEFAULT	DATE :	DATE :
1 - PRESET	Enter your settings here		
11 unit	L		
12 decimals	0000000		
13 span	0000001 unit/sec	unit/sec	
14 decimals span	0		
15 max. batch size	0		

2 - FLOWRATE

21 unit	L		
22 time unit	$/ \mathrm{min}$		
23 decimals	0000000		
24 span	0000001 unit/min		
25 decimals span	0		

SETTING	DEFAULT	DATE:	DATE :
3 - OVERRUN	Enter your settings here		
31 overrun	disabled		
32 overrun quantity	OL		
4 - DISPLAY			
41 display	increase		
42 flowrate	off		
5 - POWER MANAGEMENT			
51 LCD-new	1 sec .		
52 mode	operational		
6 - FLOWMETER			
61 formula	interpolation		
62 filter	01 (off)		
63 cut-off \%	00.0\%		
64 calibrat. low-(0)4mA	default		
65 calibrat. high-20mA	default		
7 - ANALOG OUTPUT			
71 output	disabled		
72 min. flowrate 4-mA	0000000		
73 max. flowrate 20mA	9999999		
74 cut off percentage	0.0\%		
75 tune min - 4mA	0208		
76 tune max - 20mA	6656		
77 filter	01 (off)		
8 - RELAY OUTPUT			
81 relays	1-step		
82 preclose quantity	0		
84 impulse width	010 periods		
85 pulse per	0001000		
85 pulse according	batch		
9 - COMMUNICATION			
91 baud-rate	2400		
92 address	1		
93 mode	BUS-ASC		
A - OTHERS			
A4 pass code	0000		
A5 tagnumber	0000000		

