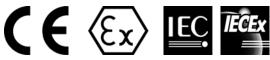

F126-P-EG-IA-TA

FLOW COMPUTER FOR CORRECTED GAS VOLUME

Signal input flowmeter: pulse, Namur and coil


Signal input pressure: (0)4-20mA

Signal input temperature: (0)4-20mA

Signal output: 4-20mA ref. corrected flowrate

Options: Intrinsically Safe, Modbus communication

SAFETY INSTRUCTIONS

- Any responsibility is lapsed if the instructions and procedures as described in this manual are not followed.
- LIFE SUPPORT APPLICATIONS: The F126-P-EG is not designed for use in life support appliances, devices, or systems where malfunction of the product can reasonably be expected to result in a personal injury. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify the manufacturer and supplier for any damages resulting from such improper use or sale.
- Electro static discharge does inflict irreparable damage to electronics! Before installing or opening the unit, the installer has to discharge himself by touching a well-grounded object.
- This unit must be installed in accordance with the EMC guidelines (Electro Magnetic Compatibility).
- Do connect a proper grounding to the aluminum casing as indicated if the F126-P-EG has been supplied with the 115-230V AC power-supply type PM. The green / yellow wire between the back-casing and removable terminal-block may never be removed.
- Intrinsically Safe applications: follow the instructions as mentioned in Chapter 5 and consult "Fluidwell F1..-.-XI - Documentation for Intrinsic Safety".

DISPOSAL

At the end of its life this product should be disposed of according to local regulations regarding waste electronic equipment. If a battery is present in this product it should be disposed of separately. The separate collection and recycling of your waste equipment will help to conserve natural resources and ensure that it is recycled in a manner that protects the environment.

SAFETY RULES AND PRECAUTIONARY MEASURES

- The manufacturer accepts no responsibility whatsoever if the following safety rules and precautions instructions and the procedures as described in this manual are not followed.
- Modifications of the F126-P-EG implemented without preceding written consent from the manufacturer, will result in the immediate termination of product liability and warranty period.
- Installation, use, maintenance and servicing of this equipment must be carried out by authorized technicians.
- Check the mains voltage and information on the manufacturer's plate before installing the unit.
- Check all connections, settings and technical specifications of the various peripheral devices with the F126-P-EG supplied.
- Open the casing only if all leads are free of potential.
- Never touch the electronic components (ESD sensitivity).
- Never expose the system to heavier conditions than allowed according to the casing classification (see manufacture's plate and chapter 4.2.).
- If the operator detects errors or dangers, or disagrees with the safety precautions taken, then inform the owner or principal responsible.
- The local labor and safety laws and regulations must be adhered to.

ABOUT THE OPERATION MANUAL

This operation manual is divided into two main sections:

- The daily use of the unit is described in chapter 2 "Operation". These instructions are meant for users.
- The following chapters and appendices are exclusively meant for electricians/technicians. These provide a detailed description of all software settings and hardware installation guidance.

This operation manual describes the standard unit as well as most of the options available. For additional information, please contact your supplier.

A hazardous situation may occur if the F126-P-EG is not used for the purpose it was designed for or is used incorrectly. Please carefully note the information in this operating manual indicated by the pictograms:

A "warning" indicates actions or procedures which, if not performed correctly, may lead to personal injury, a safety hazard or damage of the F126-P-EG or connected instruments.

A "caution" indicates actions or procedures which, if not performed correctly, may lead to personal injury or incorrect functioning of the F126-P-EG or connected instruments.

A "**note**" indicates actions or procedures which, if not performed correctly, may indirectly affect operation or may lead to an instrument response which is not planned.

Hardware version : 02.01.xx Software version : 02.05.xx

Manual : HF126PEN_EG_IA_TA_v0501_04 © Copyright 2011 : Fluidwell bv - The Netherlands.

Information in this manual is subject to change without prior notice. The manufacturer is not responsible for mistakes in this material or for incidental damage caused as a direct or indirect result of the delivery, performance or use of this material.

© All rights reserved. No parts of this publication may be reproduced or used in any form or by any means without written permission of your supplier.

Page 4

CONTENTS MANUAL

Safety i	nstructio	ons	2
Safety i	nstructio	ons	2
Disposa	al		2
Safety r	ules and	d precautionary measures	2
About th	ne opera	ation manual	3
Content	ts manu	al	4
1.	Int	roduction	5
	1.1.	System description of the F126-P-EG	5
2.	Op	erational	7
		General	
	2.2.	Control panel	7
	2.3.	Operator information and functions	
3.	Co	nfiguration	
	3.1.	Introduction	
	3.2.	Programming SETUP-level	
	3.2.1.	General	
		Overview functions SETUP level	
		Explanation SETUP-functions	
	0.2.0.	1 - Total	
		2 - Flowrate	
		3 - Power management	
		4 - Flowmeter	
		5 - Temperature	
		6 - Pressure	
		7 - Formula	
		8 - Analog output	
		9 - Communication (optional)	
		A - Others	
4.	lna	tallation	
4.	4.1.	General directions	
	4.2. 4.3.	Installation / surrounding conditions	
	-	Dimensions- Enclosure	
	4.4.	Installing the hardware	
		Introduction	
		Voltage selection sensor supply	
_	4.4.3.	Terminal connectors	
5.		rinsically safe applications	
	5.1.	General information and instructions	
	5.2.	Terminal connectors Intrinsically Safe applications	
	5.3	Configuration Examples	
	5.4	Battery replacement instructions	
6.	Ma	intenance	
	6.1.	General directions	
Append	lix A: Te	chnical specification	39
Append	lix B: Pro	oblem solving	43
		mmunication variables	
Index of	f this ma	nual	48
List of fi	igures in	this manual	48
Notes			49

1. INTRODUCTION

1.1. SYSTEM DESCRIPTION OF THE F126-P-EG

Functions and features

The flowrate / totalizer model F126-P-EG is a microprocessor driven instrument designed for the calculation of corrected gas volume using flow equations. The unit displays compensated flowrate / total, line temperature and pressure.

This product has been designed with a focus on:

- ultra-low power consumption to allow long-life battery powered applications (option PB),
- intrinsic safety for use in hazardous applications (option XI),
- several mounting possibilities with ABS or aluminum enclosures for harsh industrial surroundings,
- ability to process all types of flowmeter signals,
- transmitting possibilities with analog / pulse / alarm and communication (option) outputs.

Flowmeter and sensor inputs

For gas applications, one flowmeter, one temperature and one pressure sensor have to be connected to the F126-P-EG-IA-TA.

This manual describes the unit with an pulse input for the flowmeter "-P version". Other input versions are available to process 0-20mA or 0-10V flowmeter signals.

The pressure sensor as well as the temperature sensor needs to be a (0)-420mA signal in this case. Other input versions are available: 0-10V or PT100 temperature element.

To power the sensor, several options are available.

Standard output

 Configurable passive linear 4-20mA analog output with 10-bits resolution mirroring the calculated flowrate. Flowrate levels as well as the minimum and maximum signal output can be tuned.

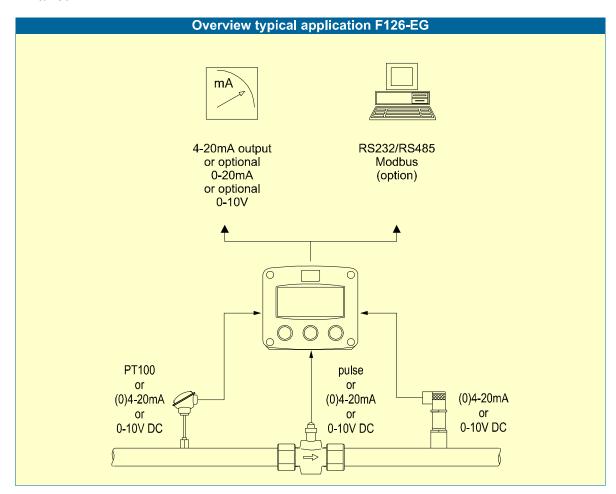


Fig. 1: Typical application for the F126-P-EG.

Page 6

Configuration of the unit

The F126-P-EG was designed to be implemented in many types of applications. For that reason, a SETUP-level is available to configure your F126-P-EG according to your specific requirements. SETUP includes several important features, such as K-factor, Span, measurement units, signal selection etc. All setting as are stored in EEPROM memory and will not get lost in case of power break-down or empty battery.

To extend the battery-life time (option), please make use of the power-management functions as described in chapter 3.2.3.

Display information

The unit has a large transflective LCD with all kinds of symbols and digits to display measuring units, status information, trend-indication and key-word messages.

Flowrate and totals can be displayed either with the small 8mm digits or with the 17mm digits. A backup of the total and accumulated total in EEPROM memory is made every minute.

Options

Following options are available: isolated or active 4-20mA / 0-10V / 0-20mA analog output, full Modbus communication RS232/485 (also battery powered), intrinsic safety, power- and sensor-supply options, panel-mount, wall-mount and weather-proof enclosures, flame proof enclosure.

2. OPERATIONAL

2.1. GENERAL

- The F126-P-EG may only be operated by personnel who are authorized and trained by the operator of the facility. All instructions in this manual are to be observed.
- Take careful notice of the "Safety rules, instructions and precautionary measures" in the front of this manual.

This chapter describes the daily use of the F126-P-EG. This instruction is meant for users / operators.

2.2. CONTROL PANEL

The following keys are available:

Fig. 2: Control Panel.

Functions of the keys

This key is used to program and save new values or settings. It is also used to get access to SETUP-level; please read chapter 3.

This key is used to SELECT accumulated total.

The arrow-key rianlge is used to increase a value after PROG has been pressed or to configure the unit; please read chapter 3.

Press this key twice to CLEAR the value for total.

The arrow-key is used to select a digit after PROG has been pressed or to configure the unit; please read chapter 3.

2.3. OPERATOR INFORMATION AND FUNCTIONS

In general, the F126-P-EG will always act function at Operator level. The information displayed depends upon the SETUP-settings. All pulses generated by the connected flowmeter are measured by the F126-P-EG in the background, whichever screen refresh rate setting is chosen. After pressing a key, the display will be updated very quickly during a 30 second period, after which it will slow down again.

Fig. 3: Example of display information during process.

For the Operator, the following functions are available:

Display calculated flowrate / total or calculated flowrate

This is the main display information of the F126-P-EG. After selecting any other information, it will always return to this main display automatically.

Total is displayed at the upper-line of the display and flowrate and the bottom line. Possibly, only flowrate will be displayed with the large 17mm digits; do press the SELECT-key to read the total. When "------" is shown, then the flowrate value is too high to be displayed. The arrows \$\display\$ indicate the increase / decrease of the flowrate trend.

Clear total

The value for total can be re-initialized. To do so, press CLEAR twice. After pressing CLEAR once, the flashing text "PUSH CLEAR" is displayed. To avoid re-initialization in this stage, press another key as CLEAR or wait for 20 seconds. Re-initialization of total DOES NOT influence the accumulated total.

Display calculated accumulated total

When the SELECT-key is pressed, total and accumulated total are displayed. The accumulated total cannot be re-initialized. The value will count up to 99,999,999,999. The unit and number of decimals are displayed according to the configuration settings for total.

Display line pressure / Display line temperature

After pressing SELECT, the actual measured pressure / temperature is displayed.

Low-battery alarm

When the battery voltage drops, it must be replaced. At first "low-battery" will flash, but as soon as it is displayed continuously, the battery MUST be replaced shortly after! Only official batteries may be used, or else the guarantee will be terminated. The remaining lifetime after the first moment of indication is generally several days up to some weeks.

Fig. 4: Example of low-battery alarm.

Alarm 01-03

When "alarm" is displayed, please consult Appendix B: problem solving.

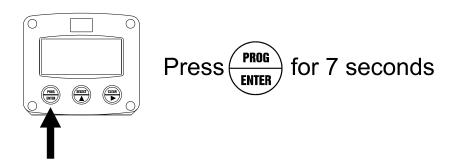
3. CONFIGURATION

3.1. INTRODUCTION

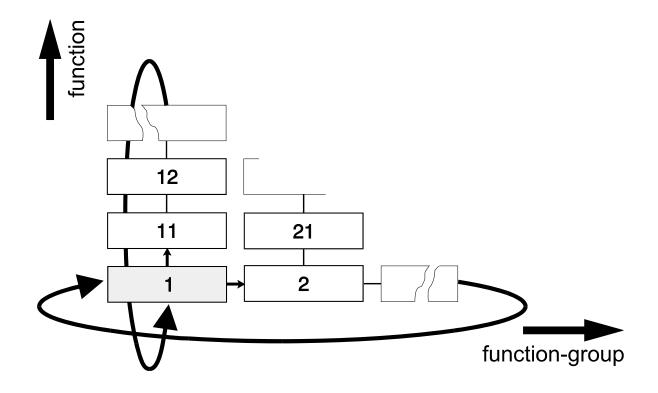
This and the following chapters are exclusively meant for electricians and non-operators. In these, an extensive description of all software settings and hardware connections are provided.

- Mounting, electrical installation, start-up and maintenance of the instrument may only be carried out by trained personnel authorized by the operator of the facility. Personnel must read and understand this Operating Manual before carrying out its instructions.
- The F126-P-EG may only be operated by personnel who are authorized and trained by the operator of the facility. All instructions in this manual are to be observed.
- Ensure that the measuring system is correctly wired up according to the wiring diagrams. The housing may only be opened by trained personnel.
- Take careful notice of the "Safety rules, instructions and precautionary measures" in the front of this manual.

3.2. PROGRAMMING SETUP-LEVEL

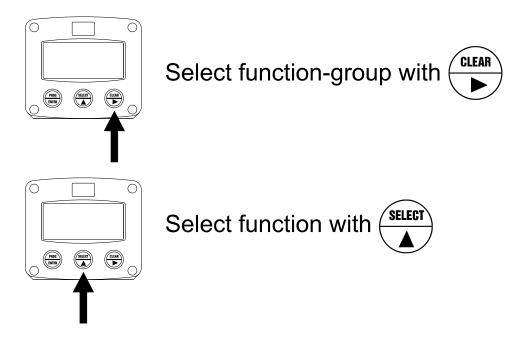

3.2.1. **GENERAL**

Configuration of the F126-P-EG is done at SETUP-level. SETUP-level is reached by pressing the PROG/ENTER key for 7 seconds; at which time, both arrows ♦ will be displayed. In order to return to the operator level, PROG will have to be pressed for three seconds. Alternatively, if no keys are pressed for 2 minutes, the unit will exit SETUP automatically. SETUP can be reached at all times while the F126-P-EG remains fully operational.



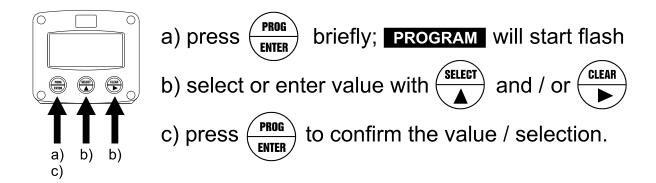
Note: A password may be required to enter SETUP. Without this password access to SETUP is denied.

To enter SETUP-level:


Matrix structure SETUP-level:

SCROLLING THROUGH SETUP-LEVEL

Selection function-group and function:


SETUP is divided into several function groups and functions.

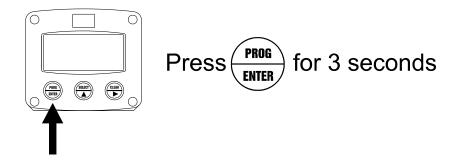
Each function has a unique number, which is displayed below the word "SETUP" at the bottom of the display. The number is a combination of two figures. The first figure indicates the function-group and the second figure the function. Additionally, each function is expressed with a keyword.

After selecting a sub-function, the next main function is selected after scrolling through all "active" sub-functions (e.g. 1^{4} , 11^{4} , 12^{4} , 13^{4} , 11^{4} , 11^{5} , 1

To change or a select a value or value:

To change a value, use ▶ to select the digits and ♠ to increase that value.

To select a setting, both ★ and ▶ can be used.


When the new value is not valid, the increase sign ★ or decrease-sign ▼ will be displayed while you are programming.

When data is altered but ENTER is not pressed, then the alteration can still be cancelled by waiting for 20 seconds or by pressing ENTER for three seconds: the PROG-procedure will be left automatically and the former value reinstated.

Note: alterations will only be set after ENTER has been pressed!

To return to OPERATOR-level:

In order to return to the operator level, PROG will have to be pressed for three seconds. Also, when no keys are pressed for 2 minutes, SETUP will be left automatically.

3.2.2. OVERVIEW FUNCTIONS SETUP LEVEL

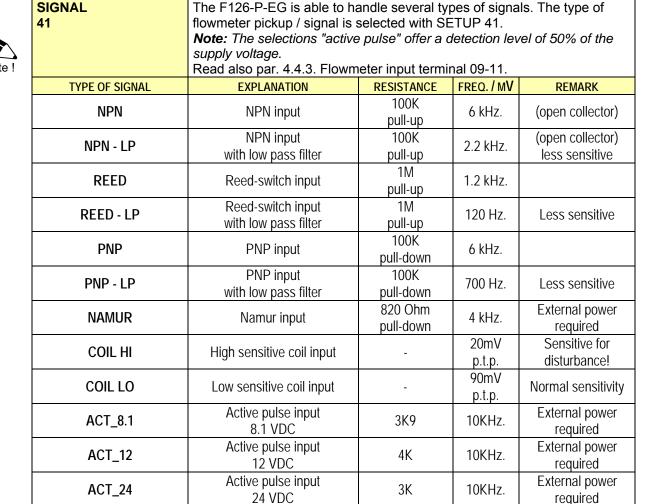
		SETUP FUNC	CTIONS AND VARIABLES
1	TOTAL		THOMO AND VAINIABLES
1	TOTA		1 mg 1 kg 1h CA1 110CA1 kh1 mg 1124
	11	UNIT	L - m3 - kg - lb - GAL - USGAL - bbl - no unit
	12	DECIMALS	0 - 1 - 2 - 3 (Ref: displayed value)
	13	K-FACTOR:	0.000010 - 9,999,999
	14	DECIMALS K-FACTOR	0 - 6
2	FLOW		
	21	UNIT	mL - L - m3 - mg - g - kg - ton - GAL - bbl - lb - cf - REV -
			no unit - scf - Nm3 - NL - P
	22	TIME UNIT	sec - min - hour - day
	23	DECIMALS	0 - 1 - 2 - 3 (Ref: displayed value)
	24	K-FACTOR	0.000010 - 9,999,999
	25	DECIMALS K-FACTOR	0 - 6
	26	FILTER	10 - 99
	27	PERIOD	0.1 - 99.9 seconds
3		R MANAGEMENT	0.1 - 99.9 Seconds
3			foot 1 000 2 000 15 000 20 000 off
	31	LCD UPDATE	fast - 1 sec - 3 sec - 15 sec - 30 sec - off
	32	BATTERY MODE	operational - shelf
4	_	METER	
	41	SIGNAL	npn - npn_lp - reed - reed_lp - pnp - pnp_lp - namur -
			coil_hi - coil_lo - act_8.1 - act_12 - act_24
5		ERATURE	
	51	SPAN	0.000001 - 999,999 K
	52	DECIMALS SPAN	0 - 6
	53	OFF-SET	0.00 - 99,999.99 K
	54	FILTER	1 - 99
	55	CALIBRATE LOW	(0)4mA
	56	CALIBRATE HIGH	20mA
	57	DISPLAY	°C - °F - K
6	PRES		U - 1 - N
U	61	UNIT	mhar har nai na unit
			mbar - bar- psi - no unit
	62	SPAN	0.000001 - 9,999,999 unit
	63	DECIMALS SPAN	0 - 6
	64	OFF-SET	0.000 - 9,999.999 unit
	65	FILTER	1 - 99
	66	CALIBRATE LOW	(0)4mA
	67	CALIBRATE HIGH	
7		CALIDIXATE HIGH	20mA
	FORM		20mA
	FORM 71		
	71	ULA EQUATIONS TYPE	EG - (fixed)
	71 72	ULA EQUATIONS TYPE NORMAL TEMPERAT.	EG - (fixed) 0.000 - 9,999.999
	71 72 73	ULA EQUATIONS TYPE NORMAL TEMPERAT. NORMAL PRESSURE	EG - (fixed) 0.000 - 9,999.999 0.000 - 9,999.999
	71 72 73 74	ULA EQUATIONS TYPE NORMAL TEMPERAT. NORMAL PRESSURE COMPRESSIBILITY	EG - (fixed) 0.000 - 9,999.999 0.000 - 9,999.999 0 - 9,999,999
	71 72 73 74 75	ULA EQUATIONS TYPE NORMAL TEMPERAT. NORMAL PRESSURE COMPRESSIBILITY NORMAL COMPRESS.	EG - (fixed) 0.000 - 9,999.999 0.000 - 9,999.999
8	71 72 73 74 75 ANAL	ULA EQUATIONS TYPE NORMAL TEMPERAT. NORMAL PRESSURE COMPRESSIBILITY NORMAL COMPRESS. OG	EG - (fixed) 0.000 - 9,999.999 0.000 - 9,999.999 0 - 9,999,999 0 - 9,999,999
	71 72 73 74 75 ANAL 81	ULA EQUATIONS TYPE NORMAL TEMPERAT. NORMAL PRESSURE COMPRESSIBILITY NORMAL COMPRESS. OG OUTPUT	EG - (fixed) 0.000 - 9,999.999 0.000 - 9,999.999 0 - 9,999,999 0 - 9,999,999 disable - enable
	71 72 73 74 75 ANAL 81 82	ULA EQUATIONS TYPE NORMAL TEMPERAT. NORMAL PRESSURE COMPRESSIBILITY NORMAL COMPRESS. OG OUTPUT 4mA / 0V	EG - (fixed) 0.000 - 9,999.999 0.000 - 9,999.999 0 - 9,999,999 0 - 9,999,999 disable - enable 0000.000 - 9,999,999
	71 72 73 74 75 ANAL 81 82 83	ULA EQUATIONS TYPE NORMAL TEMPERAT. NORMAL PRESSURE COMPRESSIBILITY NORMAL COMPRESS. OG OUTPUT 4mA / 0V 20mA / 10V	EG - (fixed) 0.000 - 9,999.999 0.000 - 9,999.999 0 - 9,999,999 0 - 9,999,999 disable - enable 0000.000 - 9,999,999 0000.000 - 9,999,999
	71 72 73 74 75 ANAL 81 82 83	ULA EQUATIONS TYPE NORMAL TEMPERAT. NORMAL PRESSURE COMPRESSIBILITY NORMAL COMPRESS. OG OUTPUT 4mA / 0V 20mA / 10V CUT-OFF	EG - (fixed) 0.000 - 9,999.999 0.000 - 9,999.999 0 - 9,999,999 0 - 9,999,999 disable - enable 0000.000 - 9,999,999 0000.000 - 9,999,999 0.0 - 9.9%
	71 72 73 74 75 ANAL 81 82 83 84 85	ULA EQUATIONS TYPE NORMAL TEMPERAT. NORMAL PRESSURE COMPRESSIBILITY NORMAL COMPRESS. OG OUTPUT 4mA / 0V 20mA / 10V CUT-OFF TUNE MIN - 4mA / 0V	EG - (fixed) 0.000 - 9,999.999 0.000 - 9,999.999 0 - 9,999,999 0 - 9,999,999 disable - enable 0000.000 - 9,999,999 0000.000 - 9,999,999 0.0 - 9.9% 0 - 9,999
	71 72 73 74 75 ANAL 81 82 83 84 85 86	ULA EQUATIONS TYPE NORMAL TEMPERAT. NORMAL PRESSURE COMPRESSIBILITY NORMAL COMPRESS. OG OUTPUT 4mA / 0V 20mA / 10V CUT-OFF	EG - (fixed) 0.000 - 9,999.999 0.000 - 9,999.999 0 - 9,999,999 0 - 9,999,999 disable - enable 0000.000 - 9,999,999 0000.000 - 9,999,999 0.0 - 9.9%
	71 72 73 74 75 ANAL 81 82 83 84 85	ULA EQUATIONS TYPE NORMAL TEMPERAT. NORMAL PRESSURE COMPRESSIBILITY NORMAL COMPRESS. OG OUTPUT 4mA / 0V 20mA / 10V CUT-OFF TUNE MIN - 4mA / 0V	EG - (fixed) 0.000 - 9,999.999 0.000 - 9,999.999 0 - 9,999,999 0 - 9,999,999 disable - enable 0000.000 - 9,999,999 0000.000 - 9,999,999 0.0 - 9.9% 0 - 9,999
	71 72 73 74 75 ANAL 81 82 83 84 85 86 87	ULA EQUATIONS TYPE NORMAL TEMPERAT. NORMAL PRESSURE COMPRESSIBILITY NORMAL COMPRESS. OG OUTPUT 4mA / 0V 20mA / 10V CUT-OFF TUNE MIN - 4mA / 0V TUNE MAX- 20mA / 10V	EG - (fixed) 0.000 - 9,999.999 0.000 - 9,999.999 0 - 9,999,999 0 - 9,999,999 disable - enable 0000.000 - 9,999,999 0000.000 - 9,999,999 0.0 - 9,999 0 - 9,999 0 - 9,999
8	71 72 73 74 75 ANAL 81 82 83 84 85 86 87 COMN	ULA EQUATIONS TYPE NORMAL TEMPERAT. NORMAL PRESSURE COMPRESSIBILITY NORMAL COMPRESS. OG OUTPUT 4mA / 0V 20mA / 10V CUT-OFF TUNE MIN - 4mA / 0V TUNE MAX- 20mA / 10V FILTER	EG - (fixed) 0.000 - 9,999.999 0.000 - 9,999.999 0 - 9,999,999 disable - enable 0000.000 - 9,999,999 0000.000 - 9,999,999 0.0 - 9.9% 0 - 9,999 0 - 9,999 0 - 9,999 0 - 9,999
8	71 72 73 74 75 ANAL 81 82 83 84 85 86 87 COMN 91	ULA EQUATIONS TYPE NORMAL TEMPERAT. NORMAL PRESSURE COMPRESSIBILITY NORMAL COMPRESS. OG OUTPUT 4mA / 0V 20mA / 10V CUT-OFF TUNE MIN - 4mA / 0V TUNE MAX- 20mA / 10V FILTER UNICATION SPEED / BAUDRATE	EG - (fixed) 0.000 - 9,999.999 0.000 - 9,999.999 0 - 9,999,999 disable - enable 0000.000 - 9,999,999 0000.000 - 9,999,999 0.0 - 9.9% 0 - 9,999 0 - 9,999 0 - 9,999 1200 - 2400 - 4800 - 9600
8	71 72 73 74 75 ANAL 81 82 83 84 85 86 87 COMN 91	ULA EQUATIONS TYPE NORMAL TEMPERAT. NORMAL PRESSURE COMPRESSIBILITY NORMAL COMPRESS. OG OUTPUT 4mA / 0V 20mA / 10V CUT-OFF TUNE MIN - 4mA / 0V TUNE MAX- 20mA / 10V FILTER UNICATION SPEED / BAUDRATE ADDRESS	EG - (fixed) 0.000 - 9,999.999 0.000 - 9,999.999 0 - 9,999,999 0 - 9,999,999 disable - enable 0000.000 - 9,999,999 0000.000 - 9,999,999 0.0 - 9.9% 0 - 9,999 0 - 9,999 1200 - 2400 - 4800 - 9600 1 - 255
9	71 72 73 74 75 ANAL 81 82 83 84 85 86 87 COMN 91	ULA EQUATIONS TYPE NORMAL TEMPERAT. NORMAL PRESSURE COMPRESSIBILITY NORMAL COMPRESS. OG OUTPUT 4mA / 0V 20mA / 10V CUT-OFF TUNE MIN - 4mA / 0V TUNE MAX- 20mA / 10V FILTER IUNICATION SPEED / BAUDRATE ADDRESS MODE	EG - (fixed) 0.000 - 9,999.999 0.000 - 9,999.999 0 - 9,999,999 disable - enable 0000.000 - 9,999,999 0000.000 - 9,999,999 0.0 - 9.9% 0 - 9,999 0 - 9,999 0 - 9,999 1200 - 2400 - 4800 - 9600

Α	OTHER	OTHERS		
	A1	TYPE / MODEL		
	A2	SOFTWARE VERSION		
	A3	SERIAL NO.		
	A4	PASSWORD	0000 - 9999	
	A5	TAGNUMBER	0000000 - 9999999	

3.2.3. EXPLANATION SETUP-FUNCTIONS

		1 - TOTAL	
MEASUREMENT UNIT	SETUP - 11 de	etermines the measurement unit for total and accumulated	
11	total. The following units can be selected:		
	L - m3	s - kg - lb GAL - USGAL - bbl (no unit).	
	Alteration of the measurement unit will have consequences for open and SETUP-level values.		
	Please note that the K-factor has to be adapted as well; the calculation is not done automatically.		
DECIMALS 12	The decimal point determines for total and accumulated total the number of digits following the decimal point. The following can be selected:		
		0000000 - 111111.1 - 22222.22 - 3333.333	
K-FACTOR 13	The K-factor is flowmeter per cubic meter. T	tor, the flowmeter pulse signals are converted to a quantity. It is based on the number of pulses generated by the selected measurement unit (SETUP 11), for example per like more accurate the K-factor, the more accurate the the system will be.	
	Example 1:	Calculating the K-factor. Let us assume that the flowmeter generates 2.4813 pulses per liter and the selected unit is "cubic meters / m3". A cubic meter consists of 1000 parts of one liter which implies 2,481.3 pulses per m3. So, the K-factor is 2,481.3. Enter for SETUP - 13: "2481300" and for SETUP - 14 - decimals K-factor "3".	
	Example 2:	Calculating the K-factor. Let us assume that the flowmeter generates 6.5231 pulses per gallon and the selected measurement unit is gallons. So, the K-Factor is 6.5231. Enter for SETUP - 13: "6523100" and for SETUP - 14 decimals K-factor "6".	
DECIMALS K-FACTOR 14	This setting determines the number of decimals for the K-factor (SETUP 13). The following can be selected:		
	0 - 1 -	2 - 3 - 4 - 5 - 6	
	indirectly.	as NO influence on the displayed number of digits for total	
	(SETUP 12)!	as the influence of the displayed flumber of digits for total	

2 - FLOWRATE The settings for total and flowrate are entirely separate. In this way, different units of measuremen				
The settings for total and can be used for each e.g				ot measuren
The display update time			wiate.	
Note: these settings also				
MEASUREMENT UNIT SETUP - 21 determines the measurement unit for flowrate.				ate.
21	The following units	s can be selected:		
		.0		f DEV
	mL - L - m scf - Nm3	ı3 - mg - g - kg - tor _ NI _ Þ	1 - GAL - DDI - ID - C	T - REV - NO
	301 - 141113	- INC - 1 .		
		neasurement unit w	ill have consequen	ces for opera
	and SETUP-level			
	not done automati	he K-factor has to b	e adapted as well;	the calculati
TIME UNIT		pe calculated per se	econd (SEC), minut	te (MIN), hou
22	(HR) or day (DAY		(0=0),	,,
DECIMALS		mines for flowrate th		following the
23	decimal point. The	e following can be s	elected:	
	00000 -	1111.1 - 2222.22	_ 3333 333	
	- 00000 -	1111.1 - 2222.22	0000.000	
K-FACTOR	With the K-factor,	the flowmeter pulse	e signals are conve	rted to a flow
24		sed on the number		
		ected measurement		
		curate the K-factor, . For examples rea		the function
DECIMALS K-FACTOR		mines the number of		K-factor
25		following can be se		
	0 - 1 - 2 - 3	3 - 4 - 5 - 6		
	Please note that the	his SETUP - influer	ices the accuracy o	of the K-facto
	indirectly.		ioco ine docurdoy e	ine it idolo
	This setting has N	O influence on the	displayed number	of digits for
	"flowrate" (SETUF			
FILTER		ed to stabilize the f stable but less ac		
26		is based on three i		
		flowrate and the la		
	filter level, the long	ger the response tir	ne on a value chan	ige will be.
		er levels with there		
FILTER VALUE	RESI	PONSE TIME ON STEP O		ALUE.
	50% INFLUENCE	75% INFLUENCE	SECONDS 90% INFLUENCE	99% INFLUI
10	0.7 second	1.4 seconds	2.2 seconds	4.4 secor
20	1.4 seconds	2.8 seconds	4.5 seconds	9.0 secon
30	2.1 seconds	4 seconds	7 seconds	14 secon
50	3.5 seconds	7 seconds	11 seconds	23 secor
75	5.2 seconds	10 seconds	17 seconds	34 secor
99	6.9 seconds	14 seconds	23 seconds	45 secor
PERIOD		culated by counting		
27		kample 1 second. T		
		e. The maximum va does influence the		
		uoes iriliuerice irie 1 update 10 times a		
		e the number of pu		,
	Note: the shorter	the time, the highe	r the power consum	nption of the
	will be (important	for battery powered	l applications).	


3 - POWER MANAGEMENT

When used with the internal battery option, the user may hold the concern of reliable measurement

	The F126-P-EG has several smart power management functions to
extend the battery life time	e significantly. Two of these functions can be set:
LCD NEW	The calculation of the display-information influences the power
31	consumption significantly. When the application does not require a fast
	display update, it is strongly advised to select a slow refresh-rate.
	Please understand that NO information will be lost; the input signal will be
	processed normally as well as the output-signals. The following can be
	selected:
	Fast - 1 sec - 3 sec - 15 sec - 30 sec - off.
	Example Battery life-time
	battery life-time with a FAST update: about 2 years.
	battery life-time with a 1 sec update: about 5 years.
	battory the time with a 1 300 apartic, about 6 years.
	Note: after a button has been pressed by the operator - the display
	refresh-rate will always be FAST during 30 seconds. When "OFF" is
	selected, the display will be switched-off after 30 seconds and will be
	switched-on as soon as a button has been pressed.
BATTERY-MODE	The unit has two modes: operational or shelf.
32	After "shelf" has been selected, the unit can be stored for several years; it
	will not count pulses, the display is switched-off but all settings and totals
	are stored. In this mode, power consumption is extremely low.
	To wake-up the unit again; press the SELECT-key twice.
	• • • • • • • • • • • • • • • • • • • •

4 - FLOWMETER

	5 - TE	MPERATUR	RE	
Conversion formula's te				
	(9/5x-459,67)°F			
	9/5x+32°F			
$x^{\circ}F = 5/9(x-32)^{\circ}C =$	5/9(x+459,67)K			
SPAN		he measurement ra		
51	sensor is determir	ned in Kelvin (K). Se	ee also setting 52 -	decimals span.
		alculating the span		
		et us assume that th		
		gnal (e.g.4mA) at a nd the maximum sig		
		C (523.15K). Than t		generaleu al 250
		nter for SETUP - 51:		als for span
		re two.	doctor ii dociiii	iaio for opair
DECIMALS SPAN		51, the number of o	decimals for span h	ave to be set.
52	0 0	,	•	
OFFSET		r needs to know the		ature at minimum
53	signal. In above e	xample "173,15 K".		
		nt to work with a "fi		
		ture in K and make		is set to zero.
EU TED		ed: 0.00 - 99,999.99		
FILTER 54		t signal of a sensor sured several times		
54		real temperature a		
		is digital filter a sta		
		filter level can be		
		is based on three i		
		analog value and t		
	the filter level, the	longer the respons	e time on a value c	hange will be.
FILTER VALUE	Resi	PONSE TIME ON STEP C	HANGE OF ANALOG VA	ALUE.
	TIME IN SECONDS			
	50% INFLUENCE	75% INFLUENCE	90% INFLUENCE	99% INFLUENCE
01	50% INFLUENCE filter disabled	75% INFLUENCE filter disabled	90% INFLUENCE filter disabled	99% INFLUENCE filter disabled
01 02				
	filter disabled	filter disabled	filter disabled	filter disabled 1.8 seconds 3 seconds
02	filter disabled 0.3 seconds	filter disabled 0.5 seconds	filter disabled 1.0 seconds	filter disabled 1.8 seconds
02 03	filter disabled 0.3 seconds 0.5 seconds	filter disabled 0.5 seconds 1.0 seconds	filter disabled 1.0 seconds 1.5 seconds	filter disabled 1.8 seconds 3 seconds
02 03 05	filter disabled 0.3 seconds 0.5 seconds 1.0 seconds	filter disabled 0.5 seconds 1.0 seconds 1.8 seconds	filter disabled 1.0 seconds 1.5 seconds 2.8 seconds	filter disabled 1.8 seconds 3 seconds 5.3 seconds
02 03 05 10	filter disabled 0.3 seconds 0.5 seconds 1.0 seconds 1.8 seconds	filter disabled 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds	filter disabled 1.0 seconds 1.5 seconds 2.8 seconds 5.6 seconds	filter disabled 1.8 seconds 3 seconds 5.3 seconds 11 seconds
02 03 05 10 20	filter disabled 0.3 seconds 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 5.3 seconds	filter disabled 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 7.0 seconds 10 seconds	filter disabled 1.0 seconds 1.5 seconds 2.8 seconds 5.6 seconds 11 seconds 17 seconds	filter disabled 1.8 seconds 3 seconds 5.3 seconds 11 seconds 23 seconds
02 03 05 10 20 30	filter disabled 0.3 seconds 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds	filter disabled 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 7.0 seconds 10 seconds 17 seconds	filter disabled 1.0 seconds 1.5 seconds 2.8 seconds 5.6 seconds 11 seconds 17 seconds 29 seconds	filter disabled 1.8 seconds 3 seconds 5.3 seconds 11 seconds 23 seconds 34 seconds 57 seconds
02 03 05 10 20 30 50	filter disabled 0.3 seconds 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 5.3 seconds 8.8 seconds 13 seconds	filter disabled 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 7.0 seconds 10 seconds 17 seconds 26 seconds	filter disabled 1.0 seconds 1.5 seconds 2.8 seconds 5.6 seconds 11 seconds 17 seconds 29 seconds 43 seconds	filter disabled 1.8 seconds 3 seconds 5.3 seconds 11 seconds 23 seconds 34 seconds 57 seconds 86 seconds
02 03 05 10 20 30 50 75	filter disabled 0.3 seconds 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 5.3 seconds 8.8 seconds 13 seconds 17 seconds	filter disabled 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 7.0 seconds 10 seconds 17 seconds 26 seconds 34 seconds	filter disabled 1.0 seconds 1.5 seconds 2.8 seconds 5.6 seconds 11 seconds 17 seconds 29 seconds 43 seconds 57 seconds	filter disabled 1.8 seconds 3 seconds 5.3 seconds 11 seconds 23 seconds 34 seconds 57 seconds 86 seconds 114 seconds
02 03 05 10 20 30 50 75	filter disabled 0.3 seconds 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 5.3 seconds 8.8 seconds 13 seconds 17 seconds	filter disabled 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 7.0 seconds 10 seconds 17 seconds 26 seconds 34 seconds is possible to calibi	filter disabled 1.0 seconds 1.5 seconds 2.8 seconds 5.6 seconds 11 seconds 17 seconds 29 seconds 43 seconds 57 seconds	filter disabled 1.8 seconds 3 seconds 5.3 seconds 11 seconds 23 seconds 34 seconds 57 seconds 86 seconds 114 seconds
02 03 05 10 20 30 50 75 99 CALIBRATE LOW 55	filter disabled 0.3 seconds 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 5.3 seconds 8.8 seconds 17 seconds With this setting it For explanation: r	filter disabled 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 7.0 seconds 10 seconds 17 seconds 26 seconds 34 seconds is possible to calibite ead setting 45. is possible to calibite to calibite to calibite examples and setting 45.	filter disabled 1.0 seconds 1.5 seconds 2.8 seconds 5.6 seconds 11 seconds 17 seconds 29 seconds 43 seconds 57 seconds	filter disabled 1.8 seconds 3 seconds 5.3 seconds 11 seconds 23 seconds 34 seconds 57 seconds 86 seconds 114 seconds for (0)4mA.
02 03 05 10 20 30 50 75 99 CALIBRATE LOW 55 CALIBRATE HIGH 56	filter disabled 0.3 seconds 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 5.3 seconds 8.8 seconds 17 seconds With this setting it For explanation: re	filter disabled 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 7.0 seconds 10 seconds 17 seconds 26 seconds 34 seconds is possible to calibrate ad setting 45. is possible to calibrate ad setting 46.	filter disabled 1.0 seconds 1.5 seconds 2.8 seconds 5.6 seconds 11 seconds 17 seconds 29 seconds 43 seconds 57 seconds rate the input value	filter disabled 1.8 seconds 3 seconds 5.3 seconds 11 seconds 23 seconds 34 seconds 57 seconds 86 seconds 114 seconds for (0)4mA.
02 03 05 10 20 30 50 75 99 CALIBRATE LOW 55 CALIBRATE HIGH 56 DISPLAY UNIT	filter disabled 0.3 seconds 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 5.3 seconds 8.8 seconds 17 seconds With this setting it For explanation: re With this setting it For explanation: re SETUP - 57 determ	filter disabled 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 7.0 seconds 10 seconds 17 seconds 26 seconds 34 seconds is possible to calibrate ad setting 45. is possible to calibrate ad setting 46. hines the displayed	filter disabled 1.0 seconds 1.5 seconds 2.8 seconds 5.6 seconds 11 seconds 17 seconds 29 seconds 43 seconds 57 seconds rate the input value	filter disabled 1.8 seconds 3 seconds 5.3 seconds 11 seconds 23 seconds 34 seconds 57 seconds 86 seconds 114 seconds for (0)4mA.
02 03 05 10 20 30 50 75 99 CALIBRATE LOW 55 CALIBRATE HIGH 56	filter disabled 0.3 seconds 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 5.3 seconds 8.8 seconds 17 seconds With this setting it For explanation: re With this setting it For explanation: re SETUP - 57 determ	filter disabled 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 7.0 seconds 10 seconds 17 seconds 26 seconds 34 seconds is possible to calibrate ad setting 45. is possible to calibrate ad setting 46.	filter disabled 1.0 seconds 1.5 seconds 2.8 seconds 5.6 seconds 11 seconds 17 seconds 29 seconds 43 seconds 57 seconds rate the input value	filter disabled 1.8 seconds 3 seconds 5.3 seconds 11 seconds 23 seconds 34 seconds 57 seconds 86 seconds 114 seconds for (0)4mA.
02 03 05 10 20 30 50 75 99 CALIBRATE LOW 55 CALIBRATE HIGH 56 DISPLAY UNIT	filter disabled 0.3 seconds 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 5.3 seconds 13 seconds 17 seconds With this setting it For explanation: re With this setting it For explanation: re SETUP - 57 determ The following units	filter disabled 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 7.0 seconds 10 seconds 26 seconds 34 seconds is possible to calibread setting 45. is possible to calibread setting 46. innes the displayed sean be selected:	filter disabled 1.0 seconds 1.5 seconds 2.8 seconds 5.6 seconds 11 seconds 17 seconds 29 seconds 43 seconds 57 seconds rate the input value	filter disabled 1.8 seconds 3 seconds 5.3 seconds 11 seconds 23 seconds 34 seconds 57 seconds 86 seconds 114 seconds for (0)4mA.
02 03 05 10 20 30 50 75 99 CALIBRATE LOW 55 CALIBRATE HIGH 56 DISPLAY UNIT	filter disabled 0.3 seconds 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 5.3 seconds 8.8 seconds 17 seconds With this setting it For explanation: re With this setting it For explanation: re SETUP - 57 determ	filter disabled 0.5 seconds 1.0 seconds 1.8 seconds 3.5 seconds 7.0 seconds 10 seconds 26 seconds 34 seconds is possible to calibread setting 45. is possible to calibread setting 46. innes the displayed sean be selected:	filter disabled 1.0 seconds 1.5 seconds 2.8 seconds 5.6 seconds 11 seconds 17 seconds 29 seconds 43 seconds 57 seconds rate the input value	filter disabled 1.8 seconds 3 seconds 5.3 seconds 11 seconds 23 seconds 34 seconds 57 seconds 86 seconds 114 seconds for (0)4mA.

	6 - F	PRESSURE		
MEASURING UNIT			nent unit for pressu	
61	The following units	s can be selected:	mbar - bar - psi	- no unit
SPAN 62	sensor is determin		ange of the (0)4-20r elected measurement oan.	
	Let us		ensor generates the	
	(e.g. 2 Enter	20mA) is generated for SETUP - 62: "00	of 2.5 bar and the n l at 50 bar. Than the 04750" if decimals :	e span is 47.5 bar. for span are 2.
DECIMALS SPAN 63	According setting	62, the number of o	decimals for span h	ave to be set.
OFFSET 64	The flow computer (2.5 bar in above 6 • When using a g compensate en • When working v and make sure	example) auge type pressure vironmental pressu vith a "fixed" pressu that the span is set	easured pressure a e indicator enter an re (e.g. air pressure ure, enter the fixed to zero.	offset to e, 1.013 bar)
FILTER		d: 0.000 - 9,999.99 signal of a sensor	99 unit. does mirror the act	ual pressure.
65	This signal is mea	sured several times	s a second. The val	lue measured is a
			s it will be fluctuatir ble and accurate re	
			set to a desired valu	
			nput values: the filt	
			the last average val	
FILTER VALUE			e time on a value o	
I ILILIK VALUE	KESF	RESPONSE TIME ON STEP CHANGE OF ANALOG VALUE. TIME IN SECONDS		
	50% INFLUENCE	75% INFLUENCE	90% INFLUENCE	99% INFLUENCE
01	filter disabled	filter disabled	filter disabled	filter disabled
02	0.3 seconds	0.5 seconds	1.0 seconds	1.8 seconds
03	0.5 seconds	1.0 seconds	1.5 seconds	3 seconds
05	1.0 seconds	1.8 seconds	2.8 seconds	5.3 seconds
10	1.8 seconds	3.5 seconds	5.6 seconds	11 seconds
20	3.5 seconds	7.0 seconds	11 seconds	23 seconds
30	5.3 seconds	10 seconds	17 seconds	34 seconds
50 75	8.8 seconds 13 seconds	17 seconds 26 seconds	29 seconds 43 seconds	57 seconds 86 seconds
99	17 seconds	34 seconds	57 seconds	114 seconds
TUNE MIN / 4MA 66	With this setting it signal from the ser pressure. This fun Warning: be before the cal influences on After pressing PRO CALIBRATE: actual "(0)4m/displayed as signal will be pressing actual will b	is possible to calibinate in the calibinate in the calibration will measure in the calibration is executed the accuracy of the DG, three settings with this setting, the A" value. After presion as the calibrative must be more the processed.	rate the input value exact 4.0 mA (or 0.0 the real output value offered signal is do as this function he system!	for (0)4mA as the 0 mA) at minimum e minimum signal. It is correct as major rated with the it is it i

TUNE MAX / 20MA 67	With this setting it is possible to calibrate the input value for 20mA as the signal from the sensor might not be exact 20.0 mA at maximum signal. This function will measure the real output value at maximum signal.
	Warning: be very sure that the offered signal is correct before the calibration is executed as this function has major influences on the accuracy of the system!
	After pressing PROG, three settings can be selected: CALIBRATE: with this setting, the input will be calibrated with the actual "20mA" value. After pressing enter, CAL SET will be displayed as soon as the calibration is completed. From that moment, the analog value must be less than the calibrated value for a reliable measurement.
	 DEFAULT: with this setting, the manufactures value is re-installed. CAL SET: to select the last calibrated value.
	- CAL SET. to select the last calibrated value.

	7 - FORMULA
EQUATIONS TYPE 71	This display function describes the supplied equations. The supplied Model is the F126-P-EG-IA-TA. "EG" stands for Equations Gas - flow computer for corrected gas volume. The formula used: $Q_{normal} = Q * (P / P_{normal}) * (T_{normal} / T) * (C_{normal} / C)$ where $Q_{normal} = calculated volume at normal conditions Q = measured volume P = line pressure P_{normal} = normal pressure T_{normal} = normal temperature T = line temperature C_{normal} = normal compressibility factor C = compressibility$
NORMAL TEMPERATURE 72 NORMAL PRESSURE	Enter here the reference temperature T _{normal} in Kelvin (K). In most applications, the gas volume has to be calculated at 0°C which is 273,15 K. Enter here the reference pressure P _{normal} in the selected pressure unit. In
73	most applications, the volume has to be calculated at 1.013 Bar.
COMPRESSABILITY FACTOR 74	Enter here the compressibility factor for the gas at operating conditions. The C factor indicates how different a "real" gas behaves from an "ideal" gas which exactly obeys the "general gas law" (PxV/T=constant) where the C factor is 1. If SETUP 74 or 75 is set to zero: the compressibility factor is disabled.
NORMAL COMPRESSABILITY FACTOR 75	Enter here the compressibility factor for the gas at reference conditions.

8 - ANALOG OUTPUT

A linear 4-20mA signal (option AB: 0-20mA or option AU: 0-10V) output signal is generated according to the flowrate with a 10 bits resolution. The settings for flowrate (SETUP - 2) influences the analog output directly.

Note: When the analog-output is not used, please make sure that setting 71 is disabled, else the battery life-time will be reduced significantly!

When a power supply is available but the output is disabled, a 3.5mA signal will be generated.

The relationship between rate and analog output is set with following functions:

DISABLE / ENABLE		The D/A converter has a relatively high power consumption. If the analog			
81					
01		output will not be used, select "disable" to switch-off the converter. For more information read par. 4.4.3.			
MINIMUM F	LOWDATE		ate according which the out	nut should gonorate a	
82	LOWKATE		/ 0V) - in most applications		
02			nals displayed is according		
			ring units (L/min for examp		
		21 and 22 but can n	•	ble) are according SETOF	
MAXIMIM	LOWRATE		ate according which the out	nut should generate a	
83	LOWNAIL		nost applications at maximu		
03			nals displayed is according		
		The time and measuring units (L/min for example) are according SETUP 21 and 22 but can not be displayed.			
CUT-OFF		To ignore leakage of the flow for example, a low-flow cut-off can be set as			
CUT-OFF		To ignore leakage o	f the flow for example, a lov	v-flow cut-off can be set as	
CUT-OFF 84					
		percentage over the	full range of 16mA (or 20m	A / 10V). When the flow is	
		percentage over the		A / 10V). When the flow is	
	20mA	percentage over the less than the require	full range of 16mA (or 20m	A / 10V). When the flow is	
84	20MA (SETUP 83)	percentage over the less than the require Examples :	full range of 16mA (or 20med rate, the current will be 4	A / 10V). When the flow is mA.	
84 4MA	_	percentage over the less than the require Examples: Cut-OFF	full range of 16mA (or 20med rate, the current will be 4	A / 10V). When the flow is mA.	
4MA (SETUP 82)	(SETUP 83)	percentage over the less than the require Examples: CUT-OFF (SETUP 84)	full range of 16mA (or 20med rate, the current will be 4	A / 10V). When the flow is mA. OUTPUT	
4MA (SETUP 82) 0 L/min	(SETUP 83) 100 L/min	percentage over the less than the require Examples: CUT-OFF (SETUP 84) 2%	red rate, the current will be 4 REQUIRED RATE (100-0)*2% = 2.0 L/min	A / 10V). When the flow is mA. OUTPUT $4+(16*2\%) = 4.32\text{mA}$	
4MA (SETUP 82) 0 L/min	(SETUP 83) 100 L/min 800 L/min	percentage over the less than the require Examples: Cut-OFF (SETUP 84) 2% 3.5%	red rate, the current will be 4 REQUIRED RATE (100-0)*2% = 2.0 L/min	A / 10V). When the flow is mA. OUTPUT $4+(16*2\%) = 4.32\text{mA}$ $4+(16*3.5\%)=4.56\text{mA}$	

	exactly with this setting.
	Before tuning the signal, be sure that the analog signal is not used for any application!
	After pressing PROG, the current will be about 4mA (or 0mA / 0V). The current can be increased/decreased with the arrow-keys and is directly active. Press ENTER to store the new value.
TUNE MAX / 20MA 86	The initial maximum analog output value is 20mA (or 10V). However, this value might slightly differ due to external influences such as temperature for example The 20mA value (or 10V) can be tuned exactly with this setting.
	Before tuning the signal, be sure that the analog signal is not used for any application!
	After pressing PROG, the current will be about 20mA. The current can be increased/decreased with the arrow-keys and is directly active. Press

ENTER to store the new value.

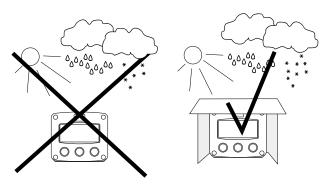
Continued next page >>>

temperature for example The 4mA value (or 0mA / 0V) can be tuned

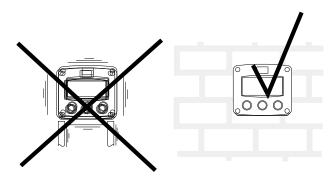
8 - ANALOG OUTPUT (CONTINUED)									
FILTER 87	This function is used to stabilize the analog output signal. The output value is update every 0.1 second. With the help of this digital filter a more stable but less actual reading can be obtained. The filter principal is based on three input values: the filter level (01-99), the last analog output value and the last average value. The higher the filter level, the longer the response time on a value change will be. Below, several filter levels with there response times are indicated:								
FILTER VALUE	RESPONSE TIME ON STEP CHANGE OF ANALOG VALUE. TIME IN SECONDS								
	50% INFLUENCE	75% INFLUENCE	90% INFLUENCE	99% INFLUENCE					
01	filter disabled	filter disabled	filter disabled	filter disabled					
02	0.1 second	ond 0.2 second 0.4 seco		0.7 second					
03	0.2 second	0.4 second	0.6 second	1.2 seconds					
05	0.4 second	0.7 second	1.1 seconds	2.1 seconds					
10	0.7 second	1.4 seconds	2.2 seconds	4.4 seconds					
20	1.4 seconds	2.8 seconds	4.5 seconds	9.0 seconds					
30	2.1 seconds	4 seconds	7 seconds	14 seconds					
50	3.5 seconds	7 seconds	11 seconds	23 seconds					
75	5.2 seconds	10 seconds	17 seconds	34 seconds					
99	6.9 seconds	14 seconds	23 seconds	45 seconds					

9 - COMMUNICATION (OPTIONAL)							
Programming of these fur	Functions as described below deal with hardware that are not part of the standard delivery. Programming of these functions does not have any effect if this hardware has not been installed.						
BAUDRATE 91	the Modbus communication protocol description for a detailed explanation. For external control, following communication speeds can be selected: 1200 - 2400 - 4800 - 9600 baud						
BUS ADDRESS For communication purposes, a unique identity can be attributed to ever							
92 F126-P-EG. This address can vary from 1-255. MODE The communication is executed according Modbus protocol RTU mode. 93 With OFF, the communication is disabled.							

	A - OTHERS						
TYPE OF MODEL A1	For support and maintenance it is important to have information about the characteristics of the F126-P-EG. Your supplier will ask for this information in the case of a serious breakdown or to assess the suitability of your model for upgrade considerations.						
VERSION SOFTWARE A2	For support and maintenance it is important to have information about the characteristics of the F126-P-EG. Your supplier will ask for this information in the case of a serious breakdown or to assess the suitability of your model for upgrade considerations.						
SERIAL NUMBER A3	For support and maintenance it is important to have information about the characteristics of the F126-P-EG. Your supplier will ask for this information in the case of a serious breakdown or to assess the suitability of your model for upgrade considerations.						
PASSWORD A4	All SETUP-values can be password protected. This protection is disabled with value 0000 (zero). Up to and including 4 digits can be programmed, for example 1234.						
TAGNUMBER A5	For identification of the unit and communication purposes, a unique tagnumber of maximum 7 digits can be entered.						


4. INSTALLATION

4.1. GENERAL DIRECTIONS


- Mounting, electrical installation, start-up and maintenance of this instrument may only be carried out by trained personnel authorized by the operator of the facility. Personnel must read and understand this Operating Manual before carrying out its instructions.
- The F126-P-EG may only be operated by personnel who are authorized and trained by the operator of the facility. All instructions in this manual are to be observed.
- Ensure that the measuring system is correctly wired up according to the wiring diagrams.
 Protection against accidental contact is no longer assured when the housing cover is removed or the panel cabinet has been opened (danger from electrical shock). The housing may only be opened by trained personnel.
- Take careful notice of the "Safety rules, instructions and precautionary measures" at the front
 of this manual.

4.2. INSTALLATION / SURROUNDING CONDITIONS

Take the relevant IP classification of the casing into account (see manufactures plate). Even an IP67 (NEMA 4X) casing should NEVER be exposed to strongly varying (weather) conditions. When panel-mounted, the unit is IP65 (NEMA 4X)!

When used in very cold surroundings or varying climatic conditions, take the necessary precautions against moisture by placing a dry sachet of silica gel, for example, inside the instrument case.

Mount the F126-P-EG on a solid structure to avoid vibrations.

4.3. DIMENSIONS- ENCLOSURE Aluminum enclosures:

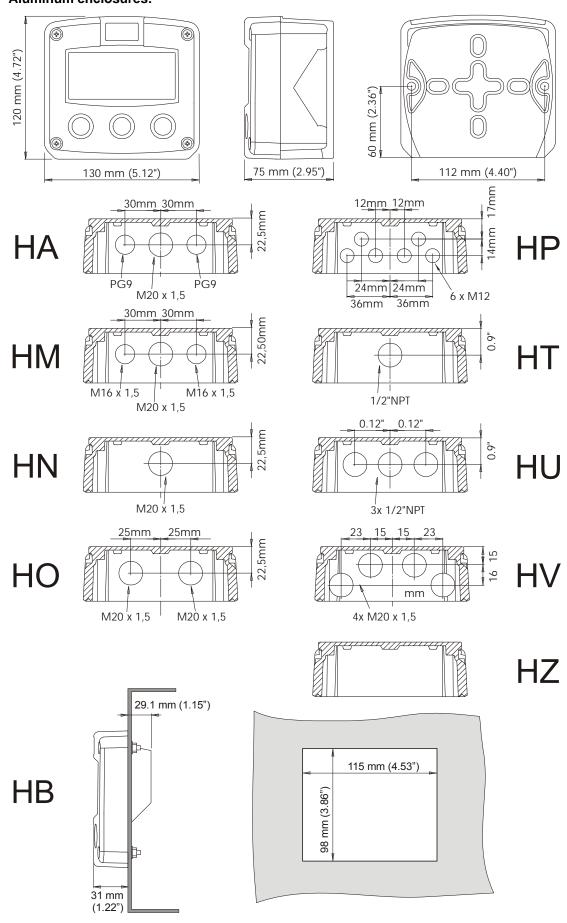


Fig. 5: Dimensions aluminum enclosures.

HF126PEN_EG_IA_TA_v0501_04

GRP enclosures:

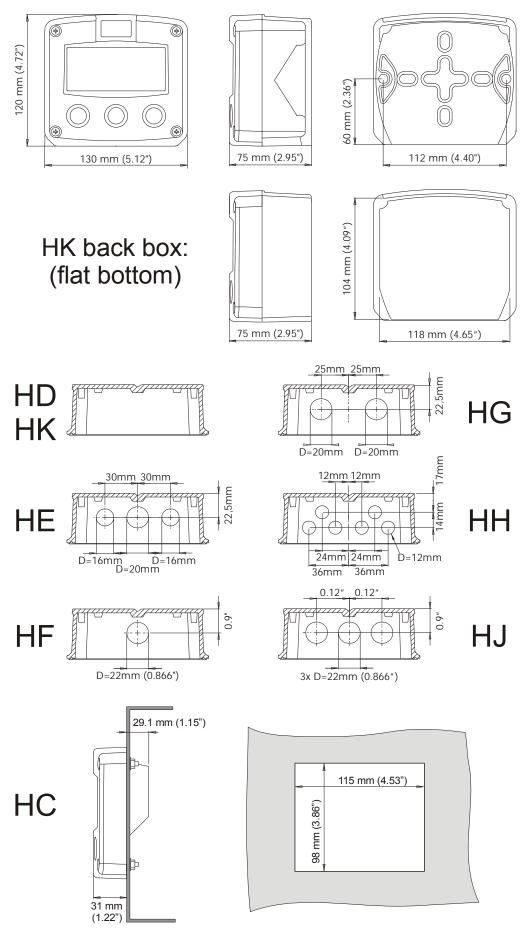


Fig. 6: Dimensions GRP enclosures. HF126PEN_EG_IA_TA_v0501_04

4.4. INSTALLING THE HARDWARE

4.4.1. INTRODUCTION

- Electro static discharge does inflict irreparable damage to electronics! Before installing or opening the unit, the installer has to discharge himself by touching a well-grounded object.
- This unit must be installed in accordance with the EMC guidelines (Electro Magnetic Compatibility).

Aluminum enclosures

- When installed in an aluminum enclosure and a potentially explosive atmosphere requiring apparatus of equipment protection level Ga and Da, the unit must be installed such that, even in the event of rare incidents, an ignition source due to impact or friction sparks between the enclosure and iron/steel is excluded.
- Do ground the aluminum enclosure properly as indicated, if the F126-P-EG has been supplied with the 115-230V AC power-supply type PM. The green / yellow wire between the back-casing and removable terminal-block may never be removed.

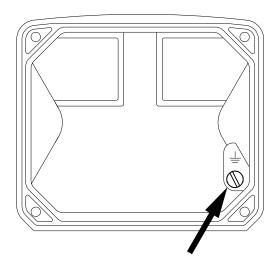


Fig. 7: Grounding aluminum enclosure with type PM 115-230V AC.

FOR INSTALLATION, PAY EMPHATIC ATTENTION TO:

- Separate cable glands with effective IP67 (NEMA4X) seals for all wires.
- Unused cable entries: ensure that you fit IP67 (NEMA4X) plugs to maintain rating.
- A reliable ground connection for both the sensor, and if applicable, for the metal casing.
- An effective screened cable for the input signal, and grounding of its screen to terminal 9 (GND) or at the sensor itself, whichever is appropriate to the application.

4.4.2. VOLTAGE SELECTION SENSOR SUPPLY

Battery powered and output-loop powered applications:

Terminal 11 offers a supply voltage of 3.2 V DC (coil signals 1.2V) for the signal output of the flowmeter.

Note: This voltage MAY NOT be used to power the flowmeters electronics, converters etc. as it is not a power output! All energy used by the flowmeters pick-up influences the battery life-time directly; it is strongly advised to use a "zero power" pickup as a coil or reed-switch. It is possible to use a NPN or PNP output signal, but the battery life time will be reduced.

Option PD-PM: Sensor supply: 3.2V - 8.2V - 12V or 24 V:

With this option, a real power supply for the sensor is available. The flowmeter can be powered with 8.2 - 12 or 24 V DC (max. 50mA@24V). The voltage is selected by the three switches inside the enclosure.

- Warning: be sure that all the leads to the terminals are disconnected from the unit when the internal plastic protection cover has been removed!
- HIGH VOLTAGE 400V !! NEVER connect the mains power supply to the unit when the plastic protection cover has been removed !!!

First, remove the terminal strip(s) after which the internal plastic cover can be removed. The switches are located in the top left corner (option PD) or on the right hand (option PF / PM) as indicated:

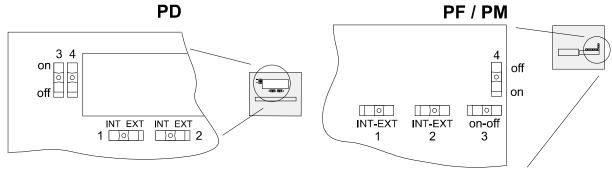


Fig. 10: switch position voltage selection (option PD, PF and PM).

Switch positions

SENSOR A						
SWITCH 1	VOLTAGE					
internal	3.2 V DC					
external	switch 3+4					

SENSOR B						
SWITCH 2	VOLTAGE					
internal	3.2 V DC					
external	switch 3+4					

VOLTAGE SELECTION							
SWITCH 3	SWITCH 4	VOLTAGE					
on	on	8.2 V DC					
off	on	12 V DC					
on	off	12 V DC					
off	off	23 V DC					

Function switch 1: voltage selection sensor A (flow) - terminal 11.

Function switch 2: voltage selection sensor B (temperature) - terminal 14.

Function switch 3+4: the combination of these switches determine the voltage as indicated.

If switch 1 and 2 are both set to position OFF than the selected voltage with

switch 3+4 is valid for both sensors.

4.4.3. TERMINAL CONNECTORS

For Intrinsically Safe applications: read chapter 5.

The following terminal connectors are available:

PO	OPTIO WER SU PD						(0 - 2 (0-2	20mA 20mA) -10V) TPUT		OWMETI INPUT JLSE TYI		TEMPER INP (0)4-2	UT	SUPPLY DC	′		INF	SURE PUT 20mA		
GND	1 N	2 L1	3	4	5	6	7	8 ! ↓	9 _	10 SIGNAL	11	12 _	13 I †	14	15	16	17 ⊥	18 I †	19	

Fig. 11 Overview terminal connectors standard configuration F126-P-EG and most options.

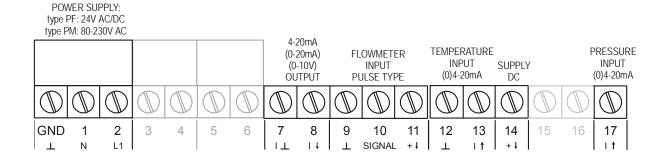


Fig. 12 Overview terminal connectors with option PF (24V) or PM (80-230V) mains supply.

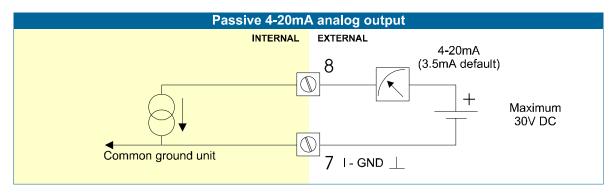
REMARKS TERMINAL CONNECTORS:

Terminal GND- 01- 02; power supply - only available with option PD, PF or PM:

	Option	CENCOD CLIDDI V		liaht	N AA	N AU	n OA	n OR		
	OPTION	SENSOR SUPPLY	GND	01	02	back	OPTION	OPTION	optio	optio
PD	8-24V AC	8,2-12-24V max 50mA		AC	AC		\Diamond	\Diamond	\Diamond	
PD	8-30V DC	8,2-12-24V max 50mA	L-	L+			\Diamond	\Diamond	\Diamond	
PF	24V AC ± 15%	8,2-12-24V max 50mA		AC	AC		\Diamond	\Diamond		\Diamond
PF	24V DC ± 15%	8,2-12-24V max 50mA	L-	L+			\Diamond	\Diamond		\Diamond
PM	115-230V AC ± 15%	8,2-12-24V max 50mA	EARTH	AC	AC		\Diamond	\Diamond	\Diamond	\Diamond

 Φ = standard \Diamond =option

Terminal 07-08; POWER SUPPLY - output loop powered:

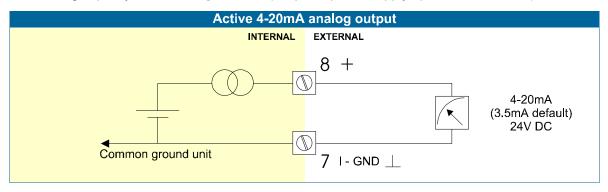

Connect an external power-supply of 8-24 volt AC or 8-30VDC to these terminals or a 4-20mA loop. For a DC supply: connect the "-" to terminal 7 and the "+" to terminal 8. When power is available on these terminals, the (optional) internal battery will be disabled / enabled automatically to extend the battery life time. (Only valid for the standard passive output).

Terminal 07-08; analog output (passive) (SETUP 6) :

A 4-20mA-current-sink signal proportional to the flowrate is available as standard.

A DC power supply should be connected to terminal 07 and 08 where the current is regulated by unit. This DC supply is also used to power the unit (output loop-powered). When a power supply is available but the output is disabled, a 3.5mA signal will be generated.

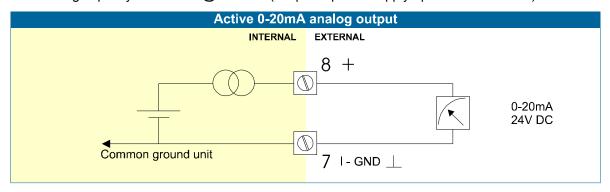
Max. driving capacity 1000 Ohm.



Option AA:

An active 4-20mA signal proportional to the flowrate is available with this option.

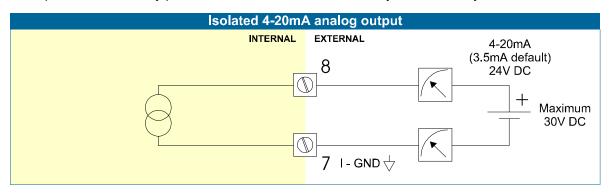
When the output is disabled, a 3.5mA signal will be generated.


Max. driving capacity 1000 Ohm @ 24VDC. (Requires power supply option PD / PF / PM).

Option AB:

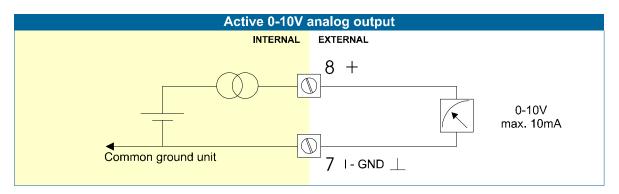
An <u>active 0-20mA signal</u> proportional to the flowrate is available with this option.

Max. driving capacity 1000 Ohm @ 24VDC. (Requires power supply option PD / PF / PM).


Option Al:

An <u>isolated 4-20mA signal</u> proportional to the flowrate is available with this option.

When the output is disabled, a 3.5mA signal will be generated.


Max. driving capacity 1000 Ohm @ 30VDC.

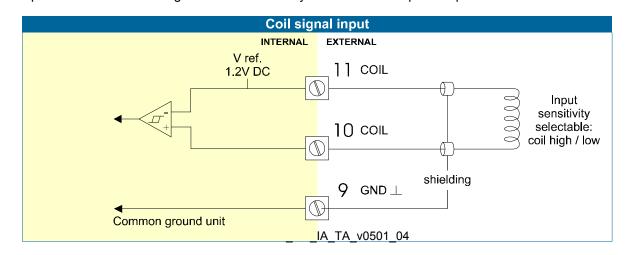
This option can be battery powered but the life time of the battery is about 2 -3 years.

Option AU:

A <u>0-10VDC signal</u> proportional to the flowrate is available with this option. Max. load 10mA @ 10VDC. (Requires power supply option PD / PF / PM).

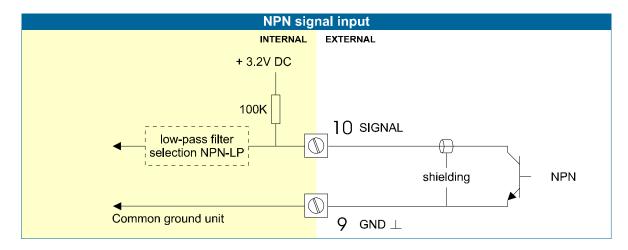
Terminal 09-11; Flowmeter input:

Three basic types of flowmeter signals can be connected to the unit: pulse, active pulse or coil. The screen of the signal wire must be connected to the common ground terminal 09. The maximum input frequency is approximately 10 kHz (depending on the type of signal). The required input signal has top be selected with SETUP-function (read par. 3.2.3.)


Coil-signal:

The F126-P-EG is suitable for flowmeters which have a coil output signal. Two sensitivity levels can be selected with the SETUP-function:

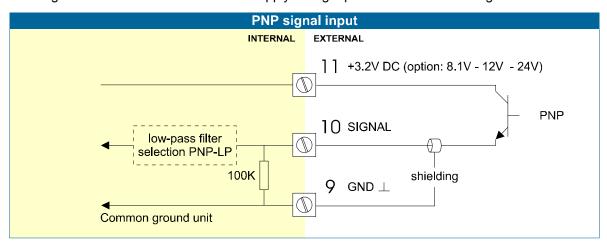
COIL LO: sensitivity from about 120mV peak to peak.


COIL HI: sensitivity from about 20mV peak to peak.

Option ZF offers for setting COIL HI a sensitivity from about 10mV peak to peak. Option ZG offers for setting COIL HI a sensitivity from about 5mV peak to peak.

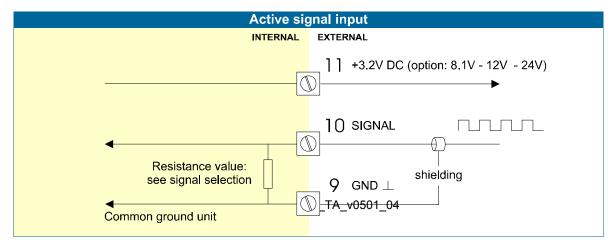
Pulse-signal NPN / NPN-LP:

The F126-P-EG is suitable for flowmeters which have a NPN output signal. For a reliable pulse detection, the pulse amplitude has to go below 1.2V. Signal setting NPN-LP allows a lower maximum frequency due to the enabled low-pass filter - read par. 3.2.3.

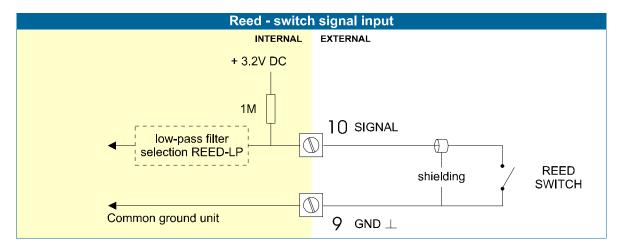


Pulse-signal PNP / PNP-LP:

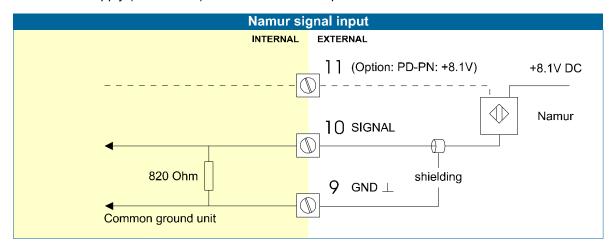
The F126-P-EG is suitable for flowmeters which have a PNP output signal. 3.2V is offered on terminal 11 which has to be switched by the sensor to terminal 10 (SIGNAL). For a reliable pulse detection, the pulse amplitude has to go above 1.2V. Signal setting PNP-LP allows a lower maximum frequency due to the enabled low-pass filter - read par. 3.2.3.


A signal voltage of 8.1 -12 or 24V DC can be offered with option PD-PN.

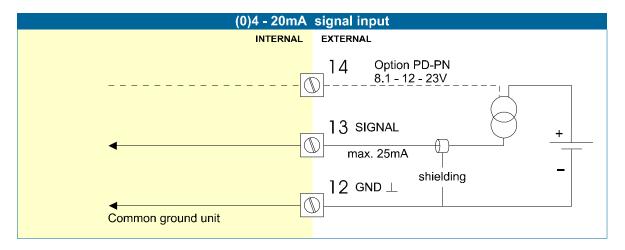
For a signal detection level of 50% of the supply voltage: please refer to "active signals".


Active signals 8.1V - 12V and 24V:

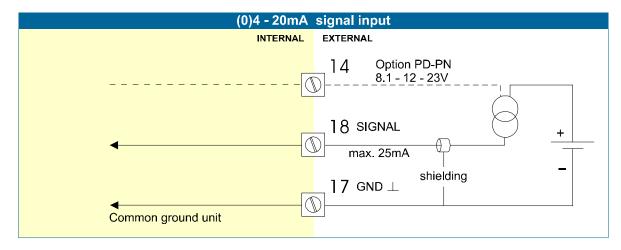
If a sensor offers an active signal, please read par. 3.2.3. The detection levels are 50% of the selected supply voltage; approximately 4V (ACT_8.1) or 6V (ACT_12) or 12V (ACT_24). Active signal selection might be desired as well in case option PD-PM has been supplied for sensor supply.


Reed-switch:

The F126-P-EG is suitable for flowmeters which have a reed-switch. To avoid pulse bounce from the reed-switch, it is advised to select REED LP - low-pass filter (read par. 3.2.3.)


NAMUR-signal:

The F126-P-EG is suitable for flowmeters with an Namur signal. The standard F126-P-EG is not able to power the Namur sensor; an external power supply for the sensor is required. However, a 8.2V sensor supply (terminal 11) can be offered with option PD-PN.


Terminal 12-13; Temperature input (0)4-20mA:

The F126-P-EG requires a (0)4-20mA or PT100 signal for temperature which will be processed 4 times a second with a 14 bits accuracy. The input is not isolated.

Terminal 17-18; Pressure input (0)4-20mA:

The F126-P-EG requires a (0)4-20mA signal for pressure which will be processed 4 times a second with a 14 bits accuracy. The input is not isolated.

IMPORTANT: if the unit has been supplied with $\underline{\text{option PF}}$ (24V AC/DC) $\underline{\text{or PM}}$ (80-230V AC) mains supply than the terminal connections are:

12: GND

14: 8.1 - 12 - 23V

17: SIGNAL input (0)-20mA for pressure.

Option - communication/printer RS232/RS485:

- see the manufacturer's plate.
- A full serial computer control and driving in accordance with RS232 (length of cable max. 15 meters) or RS485 (length of cable max. 1200 meters) is possible.
- Read the Modbus communication protocol and Appendix C.

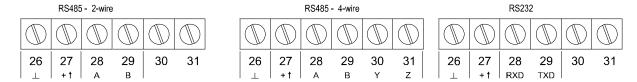


Fig. 13: Overview terminal connectors communication option.

5. INTRINSICALLY SAFE APPLICATIONS

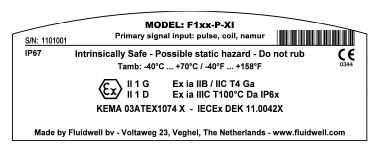
5.1. GENERAL INFORMATION AND INSTRUCTIONS

Cautions

- Mounting, electrical installation, start-up and maintenance of this device may only be carried out by trained personnel authorized by the operator of the facility. Personnel must read and understand this Operating Manual before carrying out its instructions.
- This device may only be operated by personnel who are authorized and trained by the operator of the facility. All instructions in this manual are to be observed.
- Ensure that the measuring system is correctly wired up according to the wiring diagrams. Protection against accidental contact is no longer assured when the housing cover is removed or the cabinet has been opened (danger of electric shock). The housing may only be opened by trained personnel.
- To maintain the degree of protection of at least IP65 in accordance with IEC 60529, certified cable entries in accordance with IEC 61241-0 must be used and correctly installed. Unused openings must be closed with suitable blanking elements.
- When the enclosure of the Indicator is made of aluminum alloy, when used in a potentially explosive atmosphere requiring apparatus of equipment protection level Ga and Da, the unit must be installed such that, even in the event of rare incidents, an ignition source due to impact or friction sparks between the enclosure and iron/steel is excluded.
- Take careful notice of the "Safety rules, instructions and precautionary measures" in the front
 of this manual.

Safety Instructions

- When two or more active intrinsically safe circuits are connected to the indicator, in order to prevent voltage and/or current addition, applicable to the external circuits, precautions must be taken to separate the intrinsically safe circuits in accordance with IEC 60079-11.
- For the combined connection of the different supply, input and output circuits, the instructions in this manual must be observed.
- From the safety point of view the circuits shall be considered to be connected to earth.
- For installation under ATEX directive: this intrinsically safe device must be installed in accordance with the Atex directive 94/9/EC and the product certificate KEMA 03ATEX1074 X.
- For installation under IECEx scheme: this intrinsically safe device must be installed in accordance the product certificate IECEx DEK 11.0042X.
- Exchange of Intrinsically Safe battery FWLiBAT-0xx with certificate number KEMA 03ATEX1071 U or IECEx KEM 08.0005U is allowed in Hazardous Area. See paragraph 5.4. for detailed battery replacement instructions.


Please Note

- Certificates, safety values and declaration of compliance can be found in the document named: "Fluidwell F1..-.-XI Documentation for Intrinsic Safety".
- Special conditions for safe use mentioned in both the certificate and the installation instructions must be observed for the connection of power to both input and / or output circuits.
- When installing this device in hazardous areas, the wiring and installation must comply with the appropriate installation standards for your industry.
- Study the following pages with wiring diagrams per classification.

Label information (inside and outside the enclosure)

Indicated labels on the back cover (below) and on the inside cover (right) show the type labels for intrinsically safe certified units.

For details on usage see the separate "Fluidwell F1..-..-XI Documentation for Intrinsic Safety".

Serial number and year of production

This information can be looked-up on the display: See setup function (par. 3.2.2.) for details.

5.2. TERMINAL CONNECTORS INTRINSICALLY SAFE APPLICATIONS

The unit is classified as group IIB/IIIC by default.

Classification of the unit as group IIC is only possible under the following conditions:

- The indicator is either supplied by
 - the internal supply (option -PC); or
 - the external supply connected to terminals 0 and 1 (option -PD); or
 - the circuit supply connected to terminals 7 and 8 (option -AP);

The maximum values for any of those circuits are those as defined for group IIB/IIIC;

No other active external intrinsically safe circuits may be connected to the indicator, with exception of circuits connected to terminals 3 and 4 and/or terminals 5 and 6; the maximum values for any of those circuits are those as defined for group IIB/IIIC

Terminal connectors F126-P-EG-IA-TA-XI:

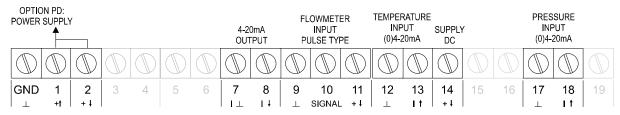
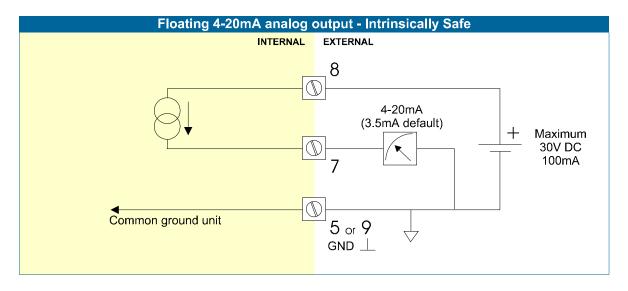


Fig. 14: Terminal connectors Intrinsically Safe applications.

Page 34


Explanation Intrinsically Safe options:

Option AF - Intrinsically Safe floating 4-20mA analog output:

A <u>floating 4-20mA signal</u> proportional to the flowrate is available with this option.

When the output is disabled, a 3.5mA signal will be generated.

Max. driving capacity 1000 Ohm @ 30V DC.

Option PD - Intrinsically Safe power supply and sensor supply - Terminal GND- 01, 11 and 14.

	OPTION	SENSOR SUPPLY	Terminal					
OI HON		32.13311.3311.21	GND	01	02			
PD	Input voltage: 8-30V DC	3,2 - 8,1V	L-	L+	output voltage is according the input voltage; internally linked with terminal 01.			

Terminal 02: this terminal offers the same voltage as connected to terminal 01.

Terminal 11 and 14: these terminals offer a 3.2V or 8.1V to power the sensor.

This voltage is selected with the switch(es) inside the enclosure. First, remove the terminals after which the internal plastic cover can be removed.

Switch	position	Switch	n position		
term	inal 11	terminal 14			
SWITCH 1	VOLTAGE	SWITCH 2	VOLTAGE		
on	8.1 V DC	on	8.1 V DC		
off	3.2 V DC	off	3.2 V DC		

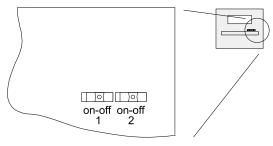


Fig. 15: Switch position voltage selection option PD-XI.

5.3 CONFIGURATION EXAMPLES

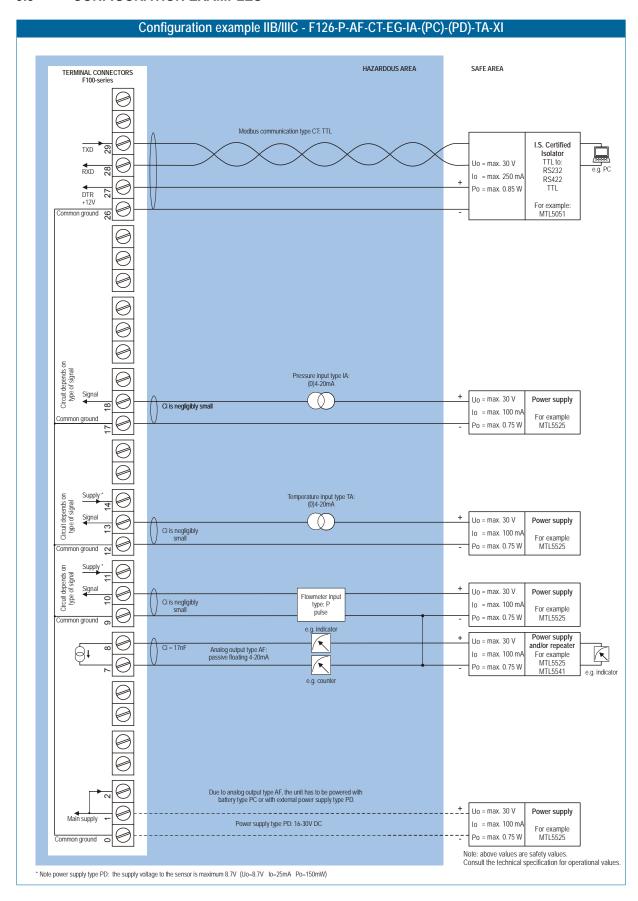


Fig. 14: Configuration example 1 Intrinsically Safe

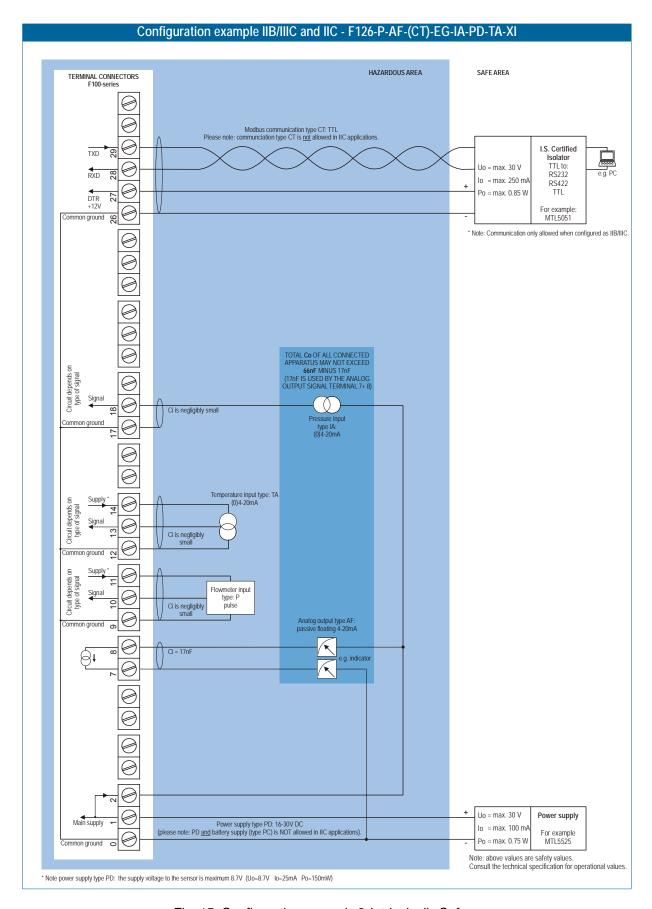
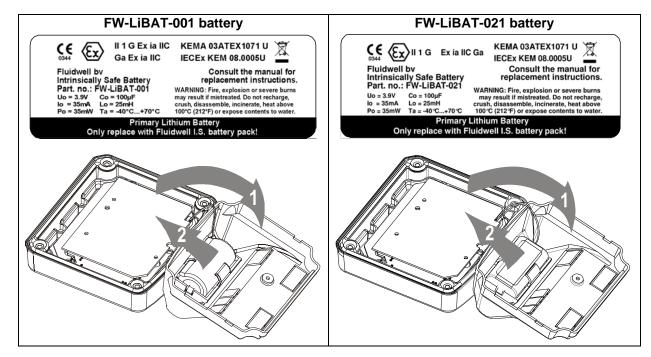


Fig. 15: Configuration example 2 Intrinsically Safe

5.4 BATTERY REPLACEMENT INSTRUCTIONS

Safety Instructions

- Fire, explosion or severe burns may result if mistreated. Do not recharge, crush, disassemble, incinerate, heat above 100°C (212°F) or expose contents to water.
- Mounting, electrical installation, start-up and maintenance of this device may only be carried out by trained personnel authorized by the plant operator. Personnel must read and understand this instruction before carrying out the replacement procedure.
- Always follow the instructions listed in the supplied Battery Replacement Instruction Sheet.
- Batteries pose an environmental hazard. Return used batteries to a recycling point.


Safety instructions for hazardous areas

- Verify the correct battery is supplied: Only batteries with indicated Ex label are certified for replacement and use in hazardous areas. Batteries for use in safe areas have no Ex label. DO NOT EXCHANGE: Using the wrong type of battery can pose a SERIOUS RISK.
- For use in hazardous areas Fluidwell recommends FW-LiBAT batteries (manufactured by Fluidwell by) only.

Battery replacement procedure

Depending on the production batch, one of two visualized Intrinsically Safe certified battery types may have been installed in the unit. They are interchangeable.

- 1. To replace the battery, open the unit to gain access to the back inside cover of the unit.
- 2. Unplug the field connectors from the back inside of the unit.
- 3. Remove the screw that holds the plastic inside cover.
- 4. Open the cover and unplug the battery connector.
- 5. Remove the battery from the inside of the plastic cover. Do not remove the battery clip!
- 6. Install the new battery and re-assemble the unit in reverse order.
- 7. Start-up the unit

6. MAINTENANCE

6.1. GENERAL DIRECTIONS

- Mounting, electrical installation, start-up and maintenance of the instrument may only be carried out by trained personnel authorized by the operator of the facility. Personnel must read and understand this Operating Manual before carrying out its instructions.
 - the operator of the facility. All instructions in this manual are to be observed. Ensure that the measuring system is correctly wired up according to the wiring diagrams. Protection against accidental contact is no longer assured when the housing cover is removed or the panel cabinet has been opened (danger from electrical shock). The housing may only be opened by trained personnel.

The F126-P-EG may only be operated by personnel who are authorized and trained by

• Take careful notice of the "Safety rules, instructions and precautionary measures" in the front of this manual.

The F126-P-EG does not require special maintenance unless it is used in low-temperature applications or surroundings with high humidity (above 90% annual mean). It is customers responsibility to take all precautions to dehumidify the internal atmosphere of the F126-P-EG in such a way that no condensation will occur, for example by placing dry silica-gel in the casing just before closing the enclosure.

Furthermore, is required to replace or dry the silica gel from time to time as advised by the silica gel supplier.

Battery life-time:

It is influenced by several issues as:

- Type of sensor: read chapter 3.2.3. NPN and PNP inputs consume more energy then coil inputs.
- Input frequency: the higher the frequency the shorter the battery life-time.
- Flowrate calculation: the lower number of pulses (SETUP 26) the shorter the battery life-time.
- Analog output signal; be sure that an external power supply is connected or that the function is disabled if not in use; else it has major influence on the battery life-time (SETUP 71).
- Display update: fast display update has major influence; SETUP 51.
- Pulse output and communication.
- Low temperatures; the available power will be less due to battery chemistry.

Note: It is strongly advised to disable unused functions.

Check periodically:

- The condition of the casing, cable glands and front panel.
- The input/output wiring for reliability and aging symptoms.
- The process accuracy. As a result of wear and tear, re-calibration of the flowmeter might be necessary. Do re-enter any subsequent K-factor alterations.
- The indication for low-battery.
- Clean the casing with soapy-water; don't use any aggressive solvents as these might damage the polyester coating.

APPENDIX A: TECHNICAL SPECIFICATION

GENERAL

Display	
Type	High intensity reflective numeric and alphanumeric LCD, UV-resistant.
Digits	Seven 17mm (0.67") and eleven 8mm (0.31"). Various symbols and measuring units.
Refresh rate	User definable: 8 times/sec _ 30 secs.
Option	LED-backlight - available appr. July 2004.

Enclosures	
General	Die-cast aluminum or GRP (Glassfibre Reinforced Polyamide) enclosure with Polycarbonate
	window, silicone and EPDM gaskets. UV stabilized and flame retardant material.
Control Keys	Three industrial micro-switch keys. UV-stabilized silicone keypad.
	Aluminum enclosure only: UV-resistant 2-component industrial painting.
Panel-mount enclosures	Dimensions: 130 x 120 x 60mm (5.10" x 4.72" x 2.38") – LxHxD.
Classification	IP65 / NEMA4X
Panel cut-out	115 x 98mm (4.53" x 3.86") LxH.
Type HC	GRP panel-mount enclosure
Type HB	Aluminum panel-mount enclosure
Field/wall-mount enclosures	Dimensions: 130 x 120 x 75mm (5.10" x 4.72" x 2.95") – LxHxD.
Classification	IP67 / NEMA4X
Aluminium enclosures	
Type HA	Drilling: 2x PG9 – 1x M20.
Type HM	Drilling: 2x M16 – 1x M20.
Type HN	Drilling: 1x M20.
Type HO	Drilling: 2x M20.
Type HP	Drilling: 6x M12.
Type HT	Drilling: 1x ½"NPT.
Type HU	Drilling: 3x ½"NPT.
Type HV	Drilling: 4x M20
Type HZ	No drilling.
GRP enclosures	
Type HD	No drilling.
Type HE	Drilling: 2x 16mm (0.63") – 1x 20mm (0.78").
Type HF	Drilling: 1x 22mm (0.87").
Type HG	Drilling: 2x 20mm (0.78").
Type HJ	Drilling: 3x 22mm (0.87").
Type HH	Drilling: 6x 12mm (0.47").
Type HK	Flat bottom - no drilling.
ABS enclosure	
Type HS	Silicone free ABS enclosure with EPDM and PE gaskets. UV-resistant polyester keypad.
	(no drilling)

Operating temperature	
Operational	-40°C to +80°C (-40°F to +176°F)
Intrinsically Safe	-40°C to +70°C (-40°F to +158°F)

Power supply	
Type PB	Lithium battery - life-time depends upon settings - up to 5 years.
Type PC	Intrinsically Safe lithium battery - life-time depends upon settings - up to 5 years.
Type PD	8-24V AC / DC <u>+</u> 10%. Power consumption max. 10 Watt.
	Intrinsically safe: 16-30V DC; power consumption max. 0.75 Watt.
Type PF	24V AC / DC <u>+</u> 10%. Power consumption max. 15 Watt.
Type PL	Input loop powered from sensor signal 4-20mA (type A, non IS).
Type PM	115-230V AC <u>+</u> 10%. Power consumption max. 15 Watt.
Type PX	Output loop powered: 8-30V DC. Power consumption max. 0.5 Watt.
Note PF / PM	The total consumption of the sensors', backlight and outputs may not exceed 400mA@24V.
Note I.S. applications	For intrinsically safe applications, consult the safety values in the certificate.

Page 40

Sensor excitation	
Type PB / PC / PX	3.2V DC for pulse signals and 1.2V DC for coil pick-up.
	Note: This is not a real sensor supply. Only suitable for pulse sensors with a very low power
	consumption like coils (sine wave) and reed-switches.
Type PD	1.2 - 3.2 - 8.2 - 12 and 24V DC - max. 50mA@24V DC
Type PD-XI	Intrinsically safe: Pulse signals: 1.2 - 3.2 - 8.2 - max. 7mA@8.2V DC.
	Analog signals: the sensor supply voltage is according to the power supply voltage connected
	to terminal 1. Also terminal 2 offers the same voltage.
Type PF / PM	1.2 - 3.2 - 8.2 - 12 and 24V DC - max. 400mA@24V DC.

Terminal connections	
Type:	Removable plug-in terminal strip. Wire max. 1.5mm2 and 2.5mm2 (Type PM / PF)

Data protection	
Туре	EEPROM backup of all setting. Backup of running totals every minute.
	Data retention at least 10 years.
Pass code	Configuration settings can be pass code protected.

Hazardous area (option)	
Intrinsically safe Type XI	ATEX approval:
	II 1 G Ex ia IIB/IIC T4 Ga
	II 1 D Ex ia IIIC T100°C Da IP6x
	IECEx approval:
	Ex ia IIB/IIC T4 Ga
	Ex ia IIIC T100°C Da IP6x
Explosion proof	ATEX approval ref.: <ex> II 2 GD EEx d IIB T5. Weight appr. 15kg.</ex>
Type XD/XF	Dimensions of enclosure: 350 x 250 x 200mm (13.7" x 9.9" x 7.9") LxHxD.

Environment	
Electromagnetic compatibil.	Compliant ref: EN 61326 (1997), EN 61010-1 (1993).

INPUTS

Flowmeter	
Type P	Coil/sine wave (minimum 20mVpp or 80mVpp - sensitivity selectable), NPN/PNP, open
	collector, reed-switch, Namur, active pulse signals 8 - 12 and 24V.
Frequency	Minimum 0 Hz - maximum 7 kHz for total and flowrate.
	Maximum frequency depends on signal type and internal low-pass filter.
	Reed switch with low-pass filter: max. frequency 120 Hz.
K-Factor	0.000010 - 9,999,999 with variable decimal position.
Low-pass filter	Available for all pulse signals.
Type A	(0)4-20mA - with signal calibration feature. Resolution: 14 bit.
Type U	0-10 V, 0-5 V, 1-5 V - with signal calibration feature. Resolution: 14 bit.
Accuracy	0.05%. Low level cut-off programmable.
Span	0.000010 - 9,999,999 with variable decimal position.
Update time	Four times a second.
Voltage drop	2.5 Volt @ 20mA.
Load impedance	3kOhm
Relationship	Linear and square root calculation.
Note	For signal type A and U: external power to sensor required; e.g. option PD.

Temperature	
Type TP	2 or 3 wire PT100.
Standard	range: -100°C to +200°C (-148°F to 392°F) - accuracy 0.1 °C (0.18°F).
Update time	four times a second.
Note	The linearity is internally compensated.
Option ZV	range: -200°C to +800°C (-328°F to 1832°F) - accuracy 0.5 °C (0.9°F).
Type TA	(0)4-20mA - with signal calibration feature. Resolution: 14 bit.
Type TU	0-10 V, 0-5 V, 1-5 V - with signal calibration feature. Resolution: 14 bit.
Accuracy	0.05%. Low level cut-off programmable.
Span	0.000010 - 9,999,999 with variable decimal position.
Off-set	0.00 - 99,999.99 K
Update time	Four times a second.
Voltage drop	2.5 Volt @ 20mA.
Load impedance	3kOhm
Note	For signal type TA and TU: external power to sensor required; e.g. option PD.

Pressure	
Type IA	(0)4-20mA - with signal calibration feature. Resolution: 14 bit.
Type IU	0-10 V, 0-5 V, 1-5 V - with signal calibration feature. Resolution: 14 bit.
Accuracy	0.05%. Low level cut-off programmable.
Span	0.000010 - 9,999,999 with variable decimal position.
Off-set	0.000 - 9,999.999 unit
Update time	Four times a second.
Voltage drop	2.5 Volt @ 20mA.
Load impedance	3kOhm
Note	For signal type IA and IU: external power to sensor required; e.g. option PD.

OUTPUTS

Analog output	
Туре	4-20mA - passive output - not isolated.
Resolution	10-bit.
Accuracy	< 0.05% - update 10 times a second. Software function to calibrate the 4.00mA and 20.00mA
	levels precisely.
Load	max. 1 kOhm
Function	transmitting compensated flowrate.
Option AA	Active 4-20mA output (requires option PD or PM).
Option AB	Active 0-20mA output (requires option PD or PM).
Option AF	Floating 4-20mA output for Intrinsically Safe applications (requires option PB or PD).
Option AI	Galvanically isolated output - also for battery powered models.
Option AU	Active 0-10V output (requires option PD or PM).

Communication option	
Туре	RS232 or RS485 (2-wire or 4-wire).
Protocol	Modbus RTU
Speed	1200 - 2400 - 4800 - 9600 baud
Addressing	maximum 255 addresses.
Functions	reading display information, reading / writing all settings.

OPERATIONAL

Operator functions	
Displayed functions	 compensated total and/or compensated flowrate. compensated total and compensated accumulated total.
	 line pressure. line temperature. compensated total can be reset to zero by pressing the CLEAR-key twice.

Total	
Digits	7 digits.
Units	L, m3, GAL, USGAL, KG, lb, bbl, no unit.
Decimals	0 - 1 - 2 or 3.
Note	total can be reset to zero.

Accumulated total	
Digits	11 digits.
Units / decimals	according selection for total.

Flowrate	
Digits	7 digits.
Units	mL, L, m3, Gallons, KG, Ton, lb, bl, cf, RND, ft3, scf, Nm3, NI, - no units.
Decimals	0 - 1 - 2 or 3.
Time units	/sec - /min - /hr - /day.

Line temperature	
Digits	6 digits.
Units	°C, °F or K
Decimals	1
Normal temperature	default: 273.15 K - any temperature can be set.

Line pressure	
Digits	6 digits.
Units	mbar, bar, PSI, no-unit
Decimals	1
Normal pressure	default: 1.013 bar - any pressure can be set.

APPENDIX B: PROBLEM SOLVING

In this appendix, several problems are included that can occur when the F126-P-EG is going to be installed or while it is in operation.

Flowmeter does not generate pulses:

Check:

- Signal selection SETUP 41,
- Pulse amplitude (par. 4.4.3.),
- Flowmeter, wiring and connection of terminal connectors (par. 4.4.3.),
- Power supply of flowmeter (par. 4.4.2.).

Flowmeter generates "too many pulses":

Check:

- Settings for total and Flowrate: SETUP 11-14 and 21-27,
- Type of signal with actual signal selection SETUP 61,
- Sensitivity of coil input SETUP 61 and par. 4.4.3.
- Proper grounding of the F126-P-EG par. 4.4.1.
- Use screened wire for flowmeter signals and connect screen to terminal 9.

Analog output does not function properly:

Check:

- SETUP 81 is the function enabled?
- SETUP 82 / 83: are the flow-levels programmed correctly?
- connection of the external power-supply according specification.
- SETUP 27 when 4mA should be generated as soon as the flowrate is zero, it might take this
 time worst case. To get a quick response, decrease this time according to you desired response
 time.

Flowrate displays "0 / zero" while there is flow (total is counting):

Check:

- SETUP 22 / 25: are the K-factor and time unit correct?
- SETUP 26 / 27: The unit has to count the number of pulses according to SETUP 26 within the time according to SETUP 27. Make sure that 27 is set like 10.0 seconds for example: the result is that the unit has at least 10 seconds time to measure the number of pulses according to SETUP 26.

The password is unknown:

If the password is not 1234, there is only one possibility left: call your supplier.

ALARM

When the alarm flag starts to blink an internal alarm condition has occurred. Press the "select button" several times to display the 5-digit error code. The codes are:

0001: irrecoverable display-data error: data on the display might be corrupted.

0002: irrecoverable data-storage error: the programming cycle might have gone wrong: check programmed values.

0003: error 1 and error 2 occurred simultaneously

The alarm condition will almost certainly be handled internally and if all mentioned values still appear correct, no intervention by the operator is needed. If the alarm occurs more often or stays active for a longer time, please contact your supplier.

APPENDIX C: COMMUNICATION VARIABLES

Remarks:

- Below, an overview of the F126-P-EG specific variables; other common variables are described in the standard table.
- All numbers are <u>decimal numbers</u>, unless otherwise noted.
- Following variables of the standard table (var00-var30) are not valid for this product and will be responded with value 1: var00, 03-05, 07,08, 16-22, 24, 26-29.

CONFIGURATION VARIABLES F126-P-EG - SETUP-LEVEL:					
VAR	DESCRIPTION	BYTES	VALUE	REMARKS	
TOTAL					
32 (20h)	unit	1	0=L 1=m3 2=kg 3=lb 4=gal 5=usgal 6=bbl 7=none		
33 (21h)	decimals	1	03		
34 (22h)	K-factor	3	19.999.999	K-f 0000001 - K-f 0000009 is allowed when decs < 6! (VAR37)	
37 (25h)	decimals K-factor	1	06		
FLOWE	RATE				
48 (30h)	unit	1	0=mL 1=L 2=m3 3=mg 4=g 5=kg 6=ton 7=gal 8=bbl 9=lb 10=cf 11=rev (revolutions for RPM) 12=none 13=scf 14=NM3 15=NL 16=p		
49 (31h)	time unit	1	0=sec 1=min 2=hour 3=day		
50 (32h)	decimals	1	01		
51 (33h)	span	3	19.999.999	S 0000001 up to S 0000009 is allowed when decs < 6! (VAR54)	
54 (36h)	decimals span	1	06		

VAR	DESCRIPTION	BYTES	VALUE	REMARKS
DISPLA	ΛΥ			
64 (40h)	display function	1	0=total 1=flowrate	
68 (44h)	set flowrate monitor	1	0=operator level 1=SETUP level	
POWER	RMANAGEMENT			
80 (50h)	LCD update time	1	0=fast 1=1sec 2=3sec 3=15sec 4=30sec 5=off	
81 (51h)	power-mode battery	1	0=operational 1=shelf	
FLOWN	METER			
98 (62h)	formula	1	0=linear 1=square root	
99 (63h)	filter	1	099	
100 (64h)	cut-off	2	0999	steps of 0.1%
102 (66h)	calibration low (4mA)	1	0=default 1=calibrate 2=cal set	
103 (67h)	calibration high (20mA)	1	0=default 1=calibrate 2=cal set	
TEMPE	RATURE			
530 (212h)	span	3	19,999,999	
533 (215h)	decimals span	1	06	
534 (216h)	offset	3	0.0099,999.99	step: 0.01 K
186 (BAh)	calibration low (4mA)	1	0=default 1=calibrate 2=cal set	
187 (BBh)	calibration high (20mA)	1	0=default 1=calibrate 2=cal set	
183 (B7h)	filter	1	099	
528 (210h)	display	1	0= °C 1= °F 2= K	

VAR	DESCRIPTION	BYTES	VALUE	REMARKS
PRESS	URE	1	1	
544 (220h)	unit	1	0=mbar 1=bar 2=psi 3=no unit	
546 (222h)	span	3	19,999,999	
549 (225h)	decimals span	1	06	
550 (226h)	offset	3	0.0009,999.999	unit as var544 step 0.001
90 (5Ah)	calibration low (4mA)	1	0=default 1=calibrate 2=cal set	
91 (5Bh)	calibration high (20mA)	1	0=default 1=calibrate 2=cal set	
89 (59h)	filter	1	099	
FORMU	 JLA			
537 (219h)	normal temperature	3	0.0099,999.99	step: 0.01 K
555 (229h)	normal pressure	3	0.0009,999.999	unit as var544 step 0.001
227 (E3h)	compressibility	3	09,999,999	
40 (28h)	normal compress.	3	09,999,999	
ANALO	G OUTPUT			
112 (70h)	analog output	1	0=disable 1=enable	
113 (71h)	minimum rate	3	09999999	unit, time, decimals acc. var48-50
116 (74h)	maximum rate	3	09999999	unit, time, decimals acc. var48-50
119 (77h)	cut off percentage	1	099	steps of 0.1%
120 (78h)	tune minimum rate	2	09999	
122 (7Ah)	tune maximum rate	2	09999	
117 (7Fh)	filter	1	099	
OTHER				
01 (1h)	Model	2		read only!
06 (6h)	Software version	2		read only!
02 (2h)	Serial number	4		read only!
168 (A8h)	password	2	XXXX	read only!
170 AAh	tagnumber	3	09999999	Other vars: see standard table

OTHER F126-P-EG VARIABLES FOR COMMUNICATION

TOTAL - variable number 566 (236h) – 6 bytes

Read total: The value of total read using communication might differ from the value that appears

on the display. This is due to the fact that the display can only display up to seven digits (for example when two decimals are selected for total and total has a value of 123456,78 the display will show 23456,78 while communication will read a "total" of

12345678 and a "total decimals" of 2).

Write total: total can only be cleared. This means writing a value different from 0 will result in

the reply of an error message. Only writing 6 bytes of zero's to total will be

accepted.

ACCUMULATED TOTAL - variable number 560 (230h) - 6 bytes

Read acc. total: A difference between the read value and the display value, as explained for

"Read total", might appear here too.

Write acc. total: Impossible.

When reading or writing total or accumulated total it should be noted that the used values are given including the decimals. This means a read/write to one of these variables should be accompanied with a read/write to the variable that holds the number of decimals for this variable:

Example: read var. 566 for total:

Read var. 33 for total decimals and calculate the real value of total by multiplying total with 10^{-(total decimals)}

FLOWRATE - variable number 572 (23Ch) - 4 bytes

Read flowrate: The value difference as mentioned with total/acc. total might appear here

too.

Write flowrate: Impossible.

TEMPERATURE - variable number 540 (21Ch) - 4 bytes

Read temperature: possible. Write temperature: Not possible.

Pressure - variable number 556 (22Ch) - 4 bytes

Read pressure: possible. Write pressure: Not possible.

INDEX OF THIS MANUAL

accumulated Total	8	low-battery	8
actual settings	50, 51	Low-battery alarm	8
analog	, -	main-function	10
0-10V output	28	maintenance	37
floating output.	34	model	20
flowrate min.	19	NAMUR-signal	30
intrinsically safe output.	34	Notes	49
isolated output.	28	Operator level	8
output loop powered.	27	password	20, 42
passive output.	27	power supply - loop powered	27
battery life time	15, 37	power supply intrinsically safe	34
Clear Total	8	pressure	17
Coil-signal	28	pressure - normal	18
communication	20, 31	Problem solving	42
family-specific variables	43	pulse output	26
terminal connection	31	Pulse-signal NPN/PNP	29
compressibility factor	18	rate/Total	8
Configuration	9	Reed-switch:	30
Dimension enclosures	22, 23	serial number	20
display update	15	SETUP-level	9
equations	18	software version	20
filter	16, 17	subfunction	10
flowmeter		tagnumber	20
signal	15	Technical specification	38
Flowmeter input	28	temperature	16
flowrate		temperature - normal	18
calculation	14	temperature input	30, 31
decimals	14	terminal connectors	26
decimals k-factor	14	time/date	8
measuring unit	14	total	
time unit	14	decimals	13
formula	18	decimals k-factor	13
Installation	21	k-factor	13, 14
Intrinsic safety	32	measuring unit	13
Intrinsically Safe options	34	version software	20
IP classification	21	voltage selection	25
keys	7	_	
LIST OF FIGURES IN T	HIS MANU	AL	
		ess	
Fig. 4: Example of low-pattery ala	rm		8
Fig. 5: Dimensions aluminum enc	iosures		22

rıg.	1. Typical application for the F126-P-EG	ວ
Fig.	2: Control Panel.	7
Fig.	3: Example of display information during process	8
	4: Example of low-battery alarm.	
Fig.	5: Dimensions aluminum enclosures	22
Fig.	6: Dimensions GRP enclosures	23
Fig.	7: Grounding aluminum enclosure with type PM 115-230V AC	24
Fig.	10: switch position voltage selection (option PD, PF and PM)	25
Fig.	11 Overview terminal connectors standard configuration F126-P-EG and most options	26
Fig.	12 Overview terminal connectors with option PF (24V) or PM (80-230V) mains supply	26
Fig.	13: Overview terminal connectors communication option.	31
Fig.	14: Terminal connectors Intrinsically Safe applications	33
Fig.	15: Switch position voltage selection option PD-XI.	34
??	Fout! Bladwijzer niet gedefinieerd.	
Fig.	14: Configuration example 1 Intrinsically Safe	35
??	Fout! Bladwijzer niet gedefinieerd.	
Fig.	15: Configuration example 2 Intrinsically Safe	36
_		

NOTES

Page 50

Left blank intentionally

LIST OF CONFIGURATION SETTINGS					
SETTING	DEFAULT	DATE:	DATE:		
1 - TOTAL					
11 unit	L				
12 decimals	0000000				
13 K-factor	0000001				
14 decimals K-factor	0				
2 - FLOWRATE					
21 unit	L				
22 time unit	/min				
23 decimals	0000000				
24 K-factor	0000001				
25 decimals K-factor	0				
26 filter	10				
27 period time	1.0 sec.				
3 - POWER MANAGEMENT					
31 LCD-new	1 sec.				
32 mode	operational				
4 - FLOWMETER					
41 signal	coil-lo				
5 - TEMPERATURE					
51 span	0000100 k	K	K		
52 decimals span	0		1		
53 off-set	273.15 K	K	K		
54 filter	01 (off)				
55 calibrate low-(0)4mA	default				
56 calibrate high-20mA	default				
57 display unit	°C				
	•				
6 - PRESSURE	DAD				
61 unit 62 span	BAR				
·	0000100				
63 decimals span 64 off-set	0.000 BAR	unit	unit		
65 filter		diffe	unit		
	01 (off)				
66 calibrate low-(0)4mA	default				
67 calibrate high-20mA	default				
7 - FORMULA		T	,		
72 normal temperature	288.15 K	K	K		
73 normal pressure	1.013 BAR				
74 compressibility	0				
75 normal compressibility	0				

SETTING	DEFAULT	DATE:	DATE:
8 - ANALOG OUTPUT			
81 output	disabled		
82 min. flowrate 4-mA	0000000		
83 max. flowrate 20mA	999999		
84 cut off percentage	0.0%		
85 tune min - 4mA	0160		
86 tune max - 20mA	6656		
87 filter	01 (off)		
9 - COMMUNICATION			
91 baud-rate	2400		
92 address	1		
93 mode	BUS-RTU		
A - OTHERS			
A4 password	0000		
A5 tagnumber	0000000		

The Netherlands